
FASTBUS Smart Crate Controller
(FSCC)

Hardware Manual
Version PC4b

Abstract:
The FSCC is a simple FASTBUS readout controller designed for low occupancy front-end modules. It
performs most FASTBUS master operations, but is not intended to be a “general-purpose” FASTBUS
master. The module features a Motorola 68020 processor with a “Thin-wire” Ethernet port, allowing an
imbedded operating system to be installed. A FIFO memory buffers front-end data read in through
FASTBUS. The FSCC then adds a leading word count, and transmits the data out of a 32-bit port on the
FASTBUS Auxiliary connector. A “personality” card (which can contain active components) is installed in
the FASTBUS Auxiliary backplane, to convert the 32-bit parallel TTL data into any desired format for data
transmission. Information on current FSCC personality cards is included as an appendix of this document.
This document supersedes HN96, but does not replace it. HN96 applies to FSCC’s of version PC4 and
earlier.

Principal Authors of Original Document:
Mark Bowden,

Gustavo Cancelo,
Richard Kwarciany,

John Urish

PC4/PC4a/PC4b Revisions:
Richard Kwarciany

Contributing Authors:
Mark Bernett,

Robert Forster,
James Franzen,
Oscar Trevizo

November 1, 1995

HN 136

DISCLAIMER NOTICE

This material was prepared as a part of work sponsored by the United States
Department of Energy. The Department of Energy, Universities Research Association,
Inc., and their agents and employees, make no warranty, express or implied, and
assume no legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, nor represent that its use
would not infringe privately owned rights.

Table of Contents

1. GENERAL INFORMATION... 9

1.1 PURPOSE .. 9
1.2 STANDARD BUS CONNECTIONS (FASTBUS) ... 10
1.3 PACKAGING.. 10

1.3.1 Module Pinout (Backplane Connections) ... 10
1.3.2 Front Panel .. 11

1.4 POWER REQUIREMENTS ... 16

2. THEORY OF OPERATION AND OPERATING MODES .. 17

2.1 BASIC OPERATION.. 17
2.2 ON-BOARD PROCESSOR ... 19

2.2.1 Control and Status Registers .. 20
2.2.2 Error Responses ... 20
2.2.3 Interrupts .. 21

3. COMMUNICATION INTERFACES.. 23

3.1 FASTBUS INTERFACE (FPORT) .. 23
3.1.1 FASTBUS Controller Operation .. 27
3.1.2 FASTBUS Arbitration... 27
3.1.3 FASTBUS Reset Bus (RB) .. 27
3.1.4 FASTBUS Slave Mode Operation .. 27
3.1.5 List Mode FASTBUS Operation ... 28
3.1.6 Data Transfer Description and Transfer Rates .. 31
3.1.7 Internal Control and Status Registers .. 32
3.1.8 Error Responses ... 32

3.2 ETHERNET.. 32
3.2.1 Ethernet Interface ... 32
3.2.2 Ethernet Controller Interface ... 33
3.2.3 Timing Diagrams.. 34

3.3 DESCRIPTION AND OPERATION OF OUTPUT PORT (OPORT) ... 37
3.3.1 OPORT Controller Operating Modes .. 38
3.3.2 PC4b OPORT State Machine Pseudo Listing .. 42
3.3.3 OPORT input/output signals .. 43
3.3.4 OPORT Controller Interface .. 44
3.3.5 OPORT Output Waveforms .. 46
3.3.6 OPORT Auxiliary Parallel Port ... 51
3.3.7 Header and Event Counter Control System (H&C Controller) .. 52

3.3.7.1 Header and Counter (H&C) ... 52
3.3.7.2 System Interface 53
3.3.7.3 H&C Register Definitions .. 54

3.3.7.3.1 GWC Preload Register / GWC Register ... 54
3.3.7.3.2 Header Register.. ... 54
3.3.7.3.3 Control Register 55
3.3.7.3.4 Status Register 55

3.3.8 OPORT Auxiliary Connector Interface .. 55
3.4 COMMUNICATION PROTOCOLS... 56

4. APPENDIX A - FPORT CONTROLLER INSTRUCTION SET ... 57

4.1 FPORT CONTROLLER NORMAL MODE INSTRUCTION SET ... 58

4.1.1 BUS_ARBITRATE .. 58
4.1.2 BUS_RELEASE .. 59
4.1.3 ADDRESS_DATA_GEOGRAPHICAL ... 60
4.1.4 ADDRESS_CSR_GEOGRAPHICAL .. 61
4.1.5 ADDRESS_DATA_LOGICAL .. 62
4.1.6 ADDRESS_CSR_LOGICAL ... 63
4.1.7 ADDRESS_DATA_BROADCAST... 64
4.1.8 ADDRESS_CSR_BROADCAST ... 65
4.1.9 ADDRESS_RELEASE .. 66
4.1.10 DATA_PROCESSOR_RANDOM_READ ... 67
4.1.11 DATA_PROCESSOR_RANDOM_WRITE .. 68
4.1.12 DATA_PROCESSOR_SEC_ADDRESS_READ .. 69
4.1.13 DATA_PROCESSOR_SEC_ADDRESS_WRITE .. 70
4.1.14 DATA_PROCESSOR_BLOCK_TRANSFER_READ .. 71
4.1.15 DATA_PROCESSOR_BLOCK_TRANSFER_WRITE... 73
4.1.16 DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE ... 75
4.1.17 DATA_FIFO_BLOCK_TRANSFER_READ ... 76
4.1.18 DATA_FIFO_PIPELINED_READ_100 ... 78
4.1.19 DATA_FIFO_PIPELINED_READ_200 ... 79
4.1.20 DATA_FIFO_PIPELINED_READ_400 ... 80
4.1.21 SEQUENCER_NULL ... 81
4.1.22 LOCAL_COUNTER_LOAD ... 82
4.1.23 LOCAL_COUNTER_READ ... 83
4.1.24 FIFO_WRITE ... 84
4.1.25 END_OF_EVENT .. 85
4.1.26 END_OF_EVENT_REXMIT .. 86
4.1.27 SLAVE_DATA_INPUT ... 87
4.1.28 SLAVE_DATA_OUTPUT ... 88

4.2 FPORT CONTROLLER LIST MODE INSTRUCTION SET .. 92
4.2.1 BUS_ARBITRATE .. 92
4.2.2 BUS_RELEASE .. 93
4.2.3 ADDRESS_DATA_GEOGRAPHICAL ... 94
4.2.4 ADDRESS_CSR_GEOGRAPHICAL .. 95
4.2.5 ADDRESS_DATA_LOGICAL .. 96
4.2.6 ADDRESS_CSR_LOGICAL ... 97
4.2.7 ADDRESS_DATA_BROADCAST... 98
4.2.8 ADDRESS_CSR_BROADCAST ... 99
4.2.9 ADDRESS_RELEASE .. 100
4.2.10 DATA _RANDOM_READ .. 101
4.2.11 DATA _RANDOM_WRITE... 102
4.2.12 DATA _SECONDARY_ADDRESS_READ ... 103
4.2.13 DATA _SECONDARY_ADDRESS_WRITE .. 104
4.2.14 DATA _BLOCK_TRANSFER_WRITE.. 105
4.2.15 DATA _BLOCK_TRANSFER_TERMINATE .. 107
4.2.16 DATA _BLOCK_TRANSFER_READ ... 108
4.2.17 DATA _PIPELINED_READ_100 ... 110
4.2.18 DATA _PIPELINED_READ_200 ... 111
4.2.19 DATA _PIPELINED_READ_400 ... 112
4.2.20 DATA _RANDOM_READ_LEADING_WORD_COUNT ... 113
4.2.21 DATA _BLOCK_TRANSFER_READ_TO_LOCAL_COUNTER .. 114
4.2.22 TRIGGER_HOLD .. 116
4.2.23 INSTRUCTION_LIST_RE-EXECUTE ... 117
4.2.24 GENERATE_FPCREQ (IRQ)... 118
4.2.25 POLL_HALT_REQUEST ... 119
4.2.26 DELAY2.. 120

4.2.27 DELAY10.. 121
4.2.28 DELAY100.. 122
4.2.29 SEQUENCER_NULL ... 123
4.2.30 BULB_TEST ... 124
4.2.31 LOCAL_COUNTER_LOAD ... 125
4.2.32 LOCAL_COUNTER_READ ... 126
4.2.33 FIFO_WRITE_DATA ... 127
4.2.34 END_OF_EVENT .. 128
4.2.35 TRIGGER_HOLD_WITH_HALT_REQUEST .. 129

5. APPENDIX B - FSCC PARTS LIST ... 132

6. APPENDIX C - FSCC DOCUMENTATION ... 136

7. APPENDIX D - FSCC EPROM LABELING ... 139

8. APPENDIX E - FSCC PC4 ASSEMBLY DRAWING ... 141

9. APPENDIX F- FSCC VERSION HISTORY .. 143

9.1 PC1.. .. 144
9.2 PC2 AND PC3 .. 144
9.3 PC4.. 144

9.3.1 Overview... 144
9.3.2 Replacement of Obsolete Components ... 144
9.3.3 Memory Expansion ... 144

9.3.3.1 Processor RAM Expansion .. 144
9.3.3.2 Processor EPROM Expansion .. 145
9.3.3.3 Processor NVRAM Expansion... 145

9.3.4 List FIFO Modifications ... 145
9.3.5 Data FIFO Modifications ... 146
9.3.6 Tranzorb and Fusing Changes ... 146
9.3.7 Bug Fixes .. 147

9.4 PC4A.. 148
9.4.1 Overview... 148
9.4.2 Front Panel Trigger Port Enhancements ... 148
9.4.3 Suppressing Zero Word Events (SZE) .. 148
9.4.4 Write Protect Non-Volatile RAM.. 148
9.4.5 FPORT Microcode Enhancements ... 148
9.4.6 Add Control FIFO Status Bit .. 149
9.4.7 Modify OPORT Controller to Comply with DART Protocol .. 149
9.4.8 Expand CPU Memory Map .. 150

9.5 PC4B.. 151
9.5.1 Overview... 151
9.5.2 DART Interface Specification Changes .. 151

9.5.2.1 Data Link Changes (OPORT) .. 151
9.5.2.2 PERMIT Link Changes (PERMIN/PERMOUT) ... 152
9.5.2.3 Trigger Link Changes (Trigger Strobe, and Trigger ID bits)... 152

9.5.3 Data Flow Control Enhancements ... 152
9.5.4 Bug Fixes .. 152

10. APPENDIX G - FSCC AUXILIARY OUTPUT PORT INTERFACE CARDS .. 154

10.1 FSCC- DARTAC INTERFACE.. 155
10.1.1 GENERAL INFORMATION ... 156

10.1.1.1 Board Purpose .. 156
10.1.1.2 Packaging.. 156

10.1.1.2.1 Physical Size 156
10.1.1.3 Power Requirements ... 156
10.1.1.4 Cooling Requirements .. 157
10.1.1.5 ICs Used ... 157
10.1.1.6 Pin Configurations .. 157

10.1.1.6.1 FASTBUS 195 Pin 3 row Backplane Connector .. 157
10.1.1.6.2 50 Pin Connector .. 157
10.1.1.6.3 VDAS 34 Pin Connector .. 158

10.1.2 THEORY OF OPERATION AND OPERATING MODES .. 159
10.1.2.1 Basic Operation .. 159

10.1.2.1.1 DIP Switch Settings .. 159
10.1.2.1.2 Jumper Settings ... 160
10.1.2.1.3 PAL Source Listing .. 161

10.2 FSCC-VDASAC INTERFACE (E791)... 162
10.2.1 1.GENERAL INFORMATION .. 163

10.2.1.1 Board Purpose .. 163
10.2.1.2 Application ... 163
10.2.1.3 Packaging.. 164

10.2.1.3.1 Physical Size ... 164
10.2.1.4 Power Requirements ... 164
10.2.1.5 Cooling Requirements .. 164
10.2.1.6 Integrated Circuits Used 164
10.2.1.7 Pin Configurations .. 164

10.2.1.7.1 FASTBUS 195 Pin 3 row Backplane Connector .. 165
10.2.1.7.2 VDAS 64 Pin Connector .. 165
10.2.1.7.3 VDAS 10 Pin Connector .. 165

10.2.2 THEORY OF OPERATION AND OPERATING MODES .. 166
10.2.2.1 Basic Operation .. 167
10.2.2.2 Timing Diagram ... 167

10.2.3 PARTS LIST.. 168

Table of Figures
FIGURE 1 FSCC BLOCK DIAGRAM.. 9
FIGURE 2 FSCC FRONT PANEL ... 11
FIGURE 3 FSCC FUNCTIONAL BLOCK DIAGRAM... 17
FIGURE 4 ETHERNET INTERFACE BLOCK DIAGRAM ... 33
FIGURE 5 ETHERNET CONTROLLER STATE DIAGRAM... 34
FIGURE 6 ETHERNET CONTROLLER READ CYCLE... 35
FIGURE 7 ETHERNET CONTROLLER WRITE CYCLE... 36
FIGURE 8 OUTPUT PORT (OPORT) BLOCK DIAGRAM.. 40
FIGURE 9 OUTPUT PORT (OPORT) STATE MACHINE DIAGRAM... 41
FIGURE 10 OUTPUT PORT TOKEN_MIDDLE ANALYZER PICTURE ... 46
FIGURE 11 OUTPUT PORT TOKEN_FIRST ANALYZER PICTURE... 47
FIGURE 12 OUTPUT PORT TOKEN_LAST ANALYZER PICTURE.. 48
FIGURE 13 OUTPUT PORT TOKEN_ONLY ANALYZER PICTURE... 49
FIGURE 14 OUTPUT PORT 6.67 MHZ ANALYZER PICTURE... 50
FIGURE 15 OUTPUT PORT 5.0 MHZ ANALYZER PICTURE... 51
FIGURE 16 HEADER AND COUNTER BLOCK DIAGRAM... 52
FIGURE 17 HEADER AND COUNTER STATE MACHINE DIAGRAM .. 53
FIGURE 18 FSCC COMPONENT VIEW... 142
FIGURE 19 DART DAQ SYSTEM BLOCK DIAGRAM (PARTIAL).. 156
FIGURE 20 VDAS DAQ SYSTEM BLOCK DIAGRAM (PARTIAL).. 163
FIGURE 21 FSCC-VDASAC BLOCK DIAGRAM... 166
FIGURE 22 FSCC-VDASAC TIMING DIAGRAM.. 167

Tables
TABLE 1 FRONT PANEL OUTPUT PORT PINOUT.. 12
TABLE 2 FRONT PANEL INPUT PORT PINOUT.. 13
TABLE 3 FRONT PANEL SERIAL PORT CONNECTOR PINOUTS ... 14
TABLE 4 AUXILIARY PORT CONNECTOR PINOUT.. 15
TABLE 5 POWER SUPPLY REQUIREMENTS.. 16
TABLE 6 PROCESSOR ADDRESS MAP ... 19
TABLE 7 HARDWARE INTERRUPTS ... 21
TABLE 8 PARALLEL PORT BIT DEFINITIONS... 24
TABLE 9 FPORT SEQUENCER OUTPUT BITS.. 25
TABLE 10 NORMAL MODE FASTBUS INSTRUCTIONS... 26
TABLE 11 NORMAL MODE FASTBUS SLAVE INSTRUCTIONS.. 26
TABLE 12 LIST MODE FASTBUS INSTRUCTIONS.. 29
TABLE 13 OPORT CONTROLLER OPERATING MODES ... 38
TABLE 14 OPORT CPU REGISTER DEFINITIONS... 44
TABLE 15 OPORT STATUS CODE DEFINITIONS... 45
TABLE 16 OPORT AUXILIARY PARALLEL PORT BIT DEFINITIONS... 51
TABLE 17 HEADER AND COUNTER CONTROL SIGNAL TRUTH TABLE... 53
TABLE 18 HEADER AND COUNTER REGISTER MAP .. 54
TABLE 19 HEADER AND COUNTER MODE DEFINITIONS... 55
TABLE 20 FSCC RAM CONFIGURATION OPTIONS... 144
TABLE 21 FSCC-DARTAC PARTS LIST.. 160
TABLE 22 FSCC-VDASAC OUTPUT PORT AUXILIARY BOARD PARTS LIST.. 168

Blank

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 9

1. General Information

Auxiliary Card
(level conversion)FASTBUS

32

32

Tranceiver

Processor
(MC 68020)

Serial
Port

Controller

TerminalHost

Program
RAM

Local
Word

Counter

ECLTTL

Ethernet
Port

Controller

Dual-port
Memory

32

Pipeline
Latch

Global Word
Counter &

Header Latch

Pipeline
Latch

3288

Address/Data

IOD Bus

Processor
FIFO

32

32

32

Front Panel
Output

4

Front Panel
Input

4

Real Time
Clock

Interrupt
Controller

Non Volatile
RAM

 T
rigg

er

R
eal T

im
e C

lock
E

thernet

S
erial P

ort
A

uxillary P
ort

F
A

S
T

B
U

S

FSCC Block Diagram

(FCSEL)

Parallel
Port

8

(FSSEL)

Parallel
Port

FASTBUS
Port

Controller

List
FIFO

Data
FIFO

1232

Control
FIFO

Parallel
Port

Output
Port

Controller

(OPORTS)

Parallel
Port

(PARLLS)

Program
EPROM

328 832

16 8 8

32

818

Ethernet

Figure 1 FSCC Block Diagram

1.1 Purpose

The FSCC was designed as a simple readout controller for low occupancy front-end modules. It performs most
basic FASTBUS operations but was not intended to be a "general-purpose" FASTBUS master.

A Motorola 68020 processor is used to control operation of the module and any features which are not time-critical
have been allocated to software.

The original design goals were as follows;

a) a typical readout time of 1 µsec for a single slave module with a few words of data, including primary
address and address release,

b) ability to execute most standard FASTBUS Master operations, and

c) design simplicity such that a working prototype module could be assembled in 6-9 months.

FSCC Hardware Manual Version PC4b

10 November 1, 1995

1.2 Standard Bus Connections (FASTBUS)

The FSCC operates as a master on both the FASTBUS crate segment port and the (non-FASTBUS) auxiliary port.
It also supports FASTBUS slave operations on the crate segment, but at a very reduced rate. All slave operations
are a function of software.

1.3 Packaging

The FSCC is a single-width FASTBUS module containing approximately 100 integrated circuits. Physical
dimensions of the module are per the FASTBUS specification. The PC4b version also has a small child board
containing the Trigger FIFO and associated logic, and NIM level converters, near the module front panel.

1.3.1 Module Pinout (Backplane Connections)

a) FASTBUS Crate Segment (130 pin FASTBUS standard connector)
Refer to the FASTBUS specification.

b) Auxiliary Port (195 pin FASTBUS standard 3 row connector), see Table 4.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 11

1.3.2 Front Panel

00CF

SLAVE

MASTER

O
U

T
P

U
T

 P
O

R
T

IN
P

U
T

 P
O

R
T

T
S

T
R

B

THO

RESET

PERM
IN

PERM
OUT

NIM

HOST

TERM

FSCC
PC4b

ETHERNET

W
A

R
N

IN
G

B
N

C
 S

hie
ld

N
ot A

t
G

ro
und

NIM

NIM

TTL

BI RA
SYSTEMS

9101

LED

LED

Front Panel 0 -
Front Panel 1 -
Front Panel 2 -
Front Panel 3 -
N/C
N/C
N/C
N/C
N/C
N/CN/C

N/C
N/C
N/C
N/C
N/C

Front Panel 0 +
Front Panel 1 +
Front Panel 2 +
Front Panel 3 +

D
ifferential R

S-485 L
evels

D
if

fe
re

nt
ia

l R
S-

48
5

L
ev

el
s

N/C
N/C
N/C
N/C
N/C

N/C
N/C
N/C
N/C
N/C

Trigger Strobe -Trigger Strobe +
Trigger ID 0 -
Trigger ID 1 -
Trigger ID 2 -
Trigger ID 3 -

Trigger ID 0 +
Trigger ID 1 +
Trigger ID 2 +
Trigger ID 3 +

D
ifferential R

S-485 L
evelsD

if
fe

re
nt

ia
l R

S-
48

5
L

ev
el

s

Push Button

Low True
TTL Level
Input

Receive Data
(female pin)

Ground
(male pin)

Clear To Send
(female pin)

Transmit Data
(male pin)

Tansmit Data
(female pin)

Ground
(male pin)

N/C
(female pin)

Receive Data
(male pin)

Ethernet 10-base2
ThinWire BNC
Connector

NIM Level
Version of
Trigger Strobe
Input

NIM Level
Trigger Hold Off
Output

NIM Level
Permit In
Input

NIM Level
Permit Out
Output

RS-232
Serial
Ports

Figure 2 FSCC Front Panel

FSCC Hardware Manual Version PC4b

12 November 1, 1995

FASTBUS Slave Yellow LED. Indicates that the FSCC has been addressed as a slave on FASTBUS.

FASTBUS Master Green LED. Indicates that the FSCC is Master on FASTBUS.

Front Panel Output: The Front Panel Output Port consists of four latched differential RS485 pairs, which are
driven by the processor via a parallel port. These are user defined.

Table 1 Front Panel Output Port Pinout

Pin#
1Front Panel 0 +
2Front Panel 0 -
3Front Panel 1 +
4Front Panel 1 -
5Front Panel 2 +
6Front Panel 2 -
7Front Panel 3 +
8 Front Panel 3 -
9-20Reserved

NIM Trigger Strobe NIM level version of Trigger Strobe input. NIM Trigger Strobe is logically ORed with
the RS-485 version of Trigger Strobe on the front panel Input Port Connector. (See Input
Port below).

Input Port The front panel Input Port (DART Trigger Link Input) consists of five differential RS 485
pairs. Four of the differential pairs are the four bits of the Trigger ID. The fifth
differential pair is the RS-485 Trigger Strobe Input. The RS-485 Trigger Strobe input is
logically ORed with the NIM level Trigger Strobe input. The 4 bit Trigger ID is clocked
into a 64 word FIFO (First In, First Out) memory by the leading edge (high to low
transition) of the Trigger Strobe Input. The purpose of this FIFO is to allow the FSCC to
be used with front end modules which are capable of buffering more than one event’s
worth of data. The Trigger FIFO allows the FSCC to queue as many as 64 readout
triggers. The Trigger ID of the next event to be output, can be read by the processor
through a parallel port. If enabled in the H&C Control register, the four trigger ID bits are
passed automatically from the Trigger FIFO into the Header/Word Count word of the
Data Output Port. Executing a FASTBUS End Of Event instruction clocks the next
Trigger ID out of the Trigger FIFO. The Trigger FIFO’s Output Ready signal generates a
processor interrupt if enabled. Output Ready gives an active edge when the Trigger FIFO
goes from empty to not empty, and whenever an End Of Event instruction is executed.
The Trigger ID should be valid for at least 100 nsec prior to the leading edge of the
Trigger Input Strobe and remain valid for at least 100 nsec after the leading edge of the
strobe. The Trigger Strobe pulse width should be at least 100 ns.

Note: Resetting the Trigger FIFO when the Trigger Strobe input is active (- input high, +
input low) causes a superfluous word to be clocked into the Trigger FIFO. This will cause
a TSTRB interrupt if enabled. A floating (unconnected) RS-485 Trigger Strobe Input is
always interpreted as inactive. The Trigger FIFO is reset whenever the Header and
Counter is reset.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 13

Table 2 Front Panel Input Port Pinout

Pin#
1-10 Reserved
11 Trigger Strobe +
12 Trigger Strobe -
13 Trigger ID0 +
14 Trigger ID0 -
15 Trigger ID1 +
16 Trigger ID1 -
17 Trigger ID2 +
18 Trigger ID2 -
19 Trigger ID3 +
20 Trigger ID3 -

Trigger Hold Off (THO) This NIM level output can be configured via a jumper block on the child board, to
go true during one of the following four conditions:

1) The Trigger FIFO is Almost Full (True when 56 or more Trigger Strobes are
queued).

2) The Trigger FIFO is Half Full (True when 32 or more Trigger Strobes are
queued).

3) An End Of Event FASTBUS instruction has been executed (a 100ns pulse).
4) The Trigger FIFO is not empty (True when 1 or more Trigger Strobes are

queued).

THO is also driven true while the FSCC’s Data FIFO is half full. THO will latch true if
the Data FIFO becomes full. The THO latch is reset by resetting the Header and Counter.

Permit_In/Permit_Out: Serial "daisy-chain" signals for FSCC auxiliary port bussing, LEMO connectors. NIM
level (150ns) pulse. When the Output Port is configured to be either middle or last in a
permit chain, the Output Port begins outputting data when Permit In is received. Permit
Out is generated when the event has been completely output. When the Output Port is
configured to be first in a permit chain, the Output Port begins outputting data without a
Permit In the first time after configuration. Each subsequent time, the Output Port waits
for Permit In.

Reset Push-button Hard processor reset.

Remote Reset Hard processor reset. This is an active low TTL input. Shorting the connector, inserting a
50 ohm terminator, or applying a TTL low will cause a reset. This input may be Daisy-
Chained.

FSCC Hardware Manual Version PC4b

14 November 1, 1995

Serial Ports RS-232 signal levels (4 pin LEMO connectors). One connector for Host communication,
and one for Terminal communication.

Table 3 Front Panel Serial Port Connector Pinouts

Terminal port
Pin # Function

1 TXD (transmit data)
2 (no connection)
3 RXD (receive data)
4 Ground

Host port (Null Modem)
Pin # Function

1 RXD (receive data)
2 CTS (+10V Reference)
3 TXD (transmit data)
4 Ground

Ethernet Port: IEEE 802.3/Cheapernet (10BASE2) LAN Standard, Isolated BNC Connector.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 15

Table 4 Auxiliary Port Connector Pinout
Facing REAR of Module

PIN Row A Row B Row C
1 No Connection No Connection No Connection
2 No Connection No Connection No Connection
3 No Connection No Connection No Connection
4 No Connection AC00 No Connection
5 No Connection AC01 No Connection
6 No Connection AC02 No Connection
7 No Connection AC03 No Connection
8 No Connection AC04 (EOR Out Enable) No Connection
9 No Connection No Connection No Connection

10 No Connection No Connection No Connection
11 No Connection AC05 No Connection
12 -5.2 Volt Supply AC06 +5.0 Volt Supply
13 No Connection AC07 No Connection
14 No Connection AC08 (Data Strobe) No Connection
15 No Connection AC09 (End Of Record) No Connection
16 No Connection D00 No Connection
17 No Connection D01 No Connection
18 No Connection D02 No Connection
19 No Connection D03 No Connection
20 GND D04 No Connection
21 No Connection D05 No Connection
22 GND D06 GND
23 No Connection D07 No Connection
24 No Connection D08 No Connection
25 No Connection D09 No Connection
26 No Connection D10 No Connection
27 No Connection D11 No Connection
28 No Connection D12 No Connection
29 No Connection D13 No Connection
30 No Connection D14 No Connection
31 No Connection D15 No Connection
32 -5.2 Volt Supply D16 GND
33 No Connection D17 No Connection
34 No Connection D18 No Connection
35 No Connection D19 No Connection
36 No Connection D20 No Connection
37 No Connection D21 No Connection
38 No Connection D22 No Connection
39 No Connection D23 No Connection
40 No Connection D24 No Connection
41 No Connection D25 No Connection
42 No Connection D26 No Connection
43 +5.0 Volt Supply D27 GND
44 No Connection D28 GND

FSCC Hardware Manual Version PC4b

16 November 1, 1995

PIN Row A Row B Row C
45 No Connection D29 No Connection
46 No Connection D30 No Connection
47 No Connection D31 No Connection
48 No Connection No Connection No Connection
49 No Connection No Connection No Connection
50 No Connection No Connection No Connection
51 No Connection No Connection No Connection
52 No Connection No Connection No Connection
53 GND No Connection +5.0 Volt Supply
54 No Connection No Connection No Connection
55 No Connection No Connection No Connection
56 No Connection No Connection No Connection
57 No Connection No Connection No Connection
58 No Connection AC10 (Wait) No Connection
59 No Connection AC11 (Data Out Enable) No Connection
60 No Connection AC12 (Strobe Out Enable) No Connection
61 No Connection No Connection No Connection
62 No Connection No Connection No Connection
63 GND No Connection -5.2 Volt Supply
64 No Connection GND No Connection
65 No Connection -2.0 Volt Supply No Connection

1.4 Power Requirements

Total power dissipation is approximately 40 watts drawn from the three supplies listed in Table 5 Power Supply
RequirementsTable 5.

Table 5 Power Supply Requirements

Supply Current Draw Fuse
+5.0 volts 6 amps 10 Amp
-5.2 volts 2 amp 5 Amp
-2.0 volts 0.2 amps 1 Amp

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 17

2. Theory of Operation and Operating Modes

List
FIFO

CPU (68020)

RAM ROM NET
I/F

RS-
232

FASTBUS Interface
Data FIFO

Output Port Interface

Header
and

Counter

Control
FIFO

OPORT
Controller

Data

Data

FA
S

T
B

U
S

 B
ac

kp
la

n
e

FA
S

T
B

U
S

 A
u
xi

lia
ryList

Sequencer
Normal

Sequencer

End Of Event

Counter Clock

Processor
FIFO

Data

Instructions

Figure 3 FSCC Functional Block Diagram

Figure 1 shows a general block diagram of the FSCC. Figure 3 shows a functional block diagram. The individual
blocks are explained in detail below.

2.1 Basic Operation

 All module operations are controlled by memory-mapped instructions from the 68020 Processor.

Low level management of the various ports is handled by dedicated controllers. In the case of the Serial and
Ethernet Ports, the controllers are commercial integrated circuits. Controllers for the FASTBUS Port (FPORT)
and Auxiliary Output Port (OPORT) are implemented using PLD state machines.

To maximize throughput, high speed block transfer data from FASTBUS to the Auxiliary Output Port is routed
through the Data FIFO which serves two functions; it 1) decouples the input and output data rates, and 2) provides
buffering of one crate of front-end data for insertion of leading word counts on output. The buffer is implemented
using commonly available integrated circuit FIFO’s which provide a depth of 4K, 32-bit words (16K Bytes). The
processor can write data directly into the Data FIFO for testing purposes.

A 512 x 32-bit (2K Bytes) Processor FIFO connects the FASTBUS port to the Processor. Input to this FIFO can
be enabled or disabled by the Processor. When enabled, any data which is written to the Data FIFO will
simultaneously be written to the Processor FIFO. The Processor FIFO provides a high-speed path through which
the processor can sample data in the event stream.

A 512 x 40-bit (512 x 32-bit FASTBUS operand, and 512 x 8-bit instruction) List FIFO also connects the
Processor to the FASTBUS data port. This FIFO is written by the Processor and contains a FASTBUS instruction
list for use by the FPORT Controller (List Sequencer). Use of the List FIFO increases the speed of the readout by
eliminating the overhead penalty induced by the CPU. The price paid for the speed increase is reduced FASTBUS

FSCC Hardware Manual Version PC4b

18 November 1, 1995

error reporting ability. When the OPORT controller encounters an ERROR, it simply sets the “Bad Event” bit in
the OPORT Header/Word Count word, and continues.

To further improve the readout speed of the FSCC, a Local Word Counter is implemented. In a typical
application, this counter is loaded directly from the first word of a Block or Pipelined transfer, with a fixed word
count position (bits 0-11). The counter can also be preset by the processor for use with slave modules which do
not supply a leading word count.

For slave modules capable of producing leading word counts, the local counter eliminates the extra delay the
FPORT Controller normally incurs in checking for the SS=2 "end-of-block" condition. It allows better pipelining
of the data since the controller will not be required to read beyond end-of-block and then back-up it's internal
counters and pipeline registers. The Local Word Counter can also be used to produce intermediate word counts, at
user-selected boundaries for insertion in the main data stream. Maximum word count is 4095.

A Global Word Counter and Header Latch (GWC) is also implemented. This is normally used to provide a
total count of all data read from a group of modules. It is clocked by the FPORT Controller on each FASTBUS
data word. The value of this counter is inserted into the output data stream along with 5 bits of header
information on command of the OPORT Controller (execution of an End Of Event instruction). The FPORT
Controller provides both a control and a data "end-of-event" (EOE) signal. The control EOE signal tells the H&C
Controller to push the GWC along with the current header into the Control FIFO. The data EOE is put into the
Data FIFO behind the last event of data so that the OPORT controller can tell where one event ends and the next
begins when it clocks the data out. The word count is limited to 12 bits (4096 words). The 5 bit header field is
loaded by the processor. The lower four bits of the header field can automatically contain the Trigger ID data from
the Trigger FIFO if desired. Register definitions and operating modes for the header/counter latch (H&C) and
OPORT controller are outlined in this document.

A small Control FIFO connects the Header/Word Count outputs of the H&C (Header & Counter) Controller, and
Data FIFO outputs, to allow overlapping of events in the Data FIFO. This is necessary because the total word
count of an event is given by the Global Word Counter, which counts the data words as they are read in.
Therefore, the word count is not known until the event readout is complete. The OPORT wants to know the word
count before it starts outputting an event, so that it can output the word count first (leading word count OPORT
protocol). Obviously the word count cannot be inserted into the Data FIFO because it would come out last. The
word count is instead pushed into a separate FIFO, the Control FIFO. When an End Of Event FPORT instruction
is executed, the following happens. The FPORT inserts an End Of Event flag into the Data FIFO. It then drives
the End Of Event signal to the OPORT interface. This causes the H&C Controller to push the Global Word Count
value along with the Header bits into the Control. The FPORT Controller is now free to begin a new readout
without concern for the data in the Data FIFO, or any event being output through the Output Port. The OPORT
controller now sees that the Control FIFO has a word in it, and it pulls this word out of the Control FIFO and
outputs it as soon as the Permit In token is received. It then takes the data from the Data FIFO, and outputs it one
word at a time until it sees the End Of Event flag come out of the FIFO. The OPORT Controller then drives the
End Of Record output (if the OPORT controller is configured to be “last” in the permit chain), then outputs the
Permit Out pulse to pass the token. Note that EOE (End Of Event) is an internal FSCC signal and it should not be
confused the EOR (End Of Record) which is an external signal driven by the OPORT Controller.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 19

2.2 On-Board Processor

The processor is a Motorola 68020 running at 20 MHz. The 68020 was selected strictly on the basis of software
compatibility with existing Fermilab modules.

The PC4b processor address map differs from FSCC versions PC4 and older. The map is identical to version
PC4a. Table 6 shows the absolute address map.

Table 6 Processor Address Map

Base Address Transfer Type Name Purpose

0000 0000 byte, word, long word ROM1S* Program EPROM (Bank 1, 2048K)
0020 0000 byte, word, long word ROM2S* Program EPROM (Bank 2, 2048K)

0080 0000 byte, word, long word RAM1S* Program RAM (Bank 1, 512K)
0088 0000 byte, word, long word RAM2S* Program RAM (Bank 2, 512K)

OR
0080 0000 byte, word, long word RAM1S* Program RAM (Bank 1, 2048K)
00A0 0000 byte, word, long word RAM2S* Program RAM (Bank 2, 2048K)

0150 0000 byte NVDS* Real-time clock
0150 000E byte NVDS* Non-volatile memory 8K (8178 Bytes)

0160 0000 byte, word, long word ETHS* Ethernet Dual-Port RAM (8K Bytes)
0168 0000 long word CAS Ethernet Channel Attention
0170 0000 byte UARTS* Serial Ports (68681)
0178 0000 byte TMRS* Interrupt Vector/Timer Logic (MC68901)
0180 0000 byte OPORTS* OPORT Controller
0188 0000 byte PARLLS* Auxiliary Parallel Port
0190 0000 word H&CSEL* Header/Counter Registers

01A0 0000 byte, word, long word LPBKS Ethernet loopback mode set
01A8 0000 byte, word, long word LPBKC Ethernet loopback mode clear
0198 0000 byte, word, long word ETHRES Ethernet reset set
01B0 0000 byte, word, long word ETHRESC Ethernet reset clear

01B8 0000 long word FB1S* FPORT Controller (Fast cycle instructions)
01C0 0000 long word FB2S* FPORT Controller (Slow cycle instructions)
01C8 0000 byte FCSEL* FASTBUS Parallel Port 1 (MC68230)
01D0 0000 byte FSSEL* FASTBUS Parallel Port 2 (MC68230)
01D8 0000 long word FIFO1S* Processor FIFO
01E0 0000 long word FIFO2S* FPORT List FIFO
01E8 0000 long word FB1S* and FB2S* User FPORT Controller select
01F0 0000 long word FB3S* FPORT List Halt Request

* Active low signal.

Processor memory normally consists of 1 MByte of 0 wait state RAM, and 2MBytes of 1 wait state EPROM, but it
is possible to install up to 4MBytes of EPROM, and 4MBytes of RAM. Byte, word and long-word accesses are
supported. PC4b boards are equipped with a jumper to allow 28-pin or 32-pin EPROM’s to be installed if desired.

FSCC Hardware Manual Version PC4b

20 November 1, 1995

Jumpers are also provided to allow the two (2 MByte) banks of EPROM to be swapped in the 68020’s address
space. This feature can be quite useful when debugging an EPROM based application program.

A DS1386-8 real-time clock with interrupt capability and 8 MBytes of NVRAM is provided for system use. Both
RTC, and NVRAM functions are maintained by a built-in lithium battery. The NVRAM is currently used to hold
module-specific information (e.g., Ethernet address). PC4b FSCC’s also feature a write protect bit for the DS1386
to prevent a program from accidentally over writing the NVRAM. This bit is bit zero of the DUART’s eight bit
parallel I/O port, and is set and cleared by the following commands:

MOVE.B #$01,$0170000E *Write enable the NVRAM
MOVE.B #$01,$0170000F *Write protect the NVRAM

Processor reset occurs at power-up, by pressing the front-panel Reset Push-button or through the front panel reset
input Lemo. A reset can also be generated by a "watchdog" timer contained in the FASTBUS Parallel Port 1
controller (68230). If enabled, this timer must be reset by software periodically. The timer can be set for any
period from 4 µsec up to approximately 50 seconds. A module reset can be forced by software which drives the
parallel port watchdog time-out bit low.

A Processor bus response timer is contained in the other 68230 port controller. When enabled, this timer will
generate a 68020 BUS ERROR exception if the Processor fails to complete a bus cycle within the specified time.
The bus response timer also serves as the FASTBUS "long timer" when operating the FPORT in CPU mode.
However, since there is a one level instruction pipe-line, the time-out will occur on the FASTBUS instruction
following the instruction which actually caused the FPORT controller to hang. When using the FPORT in LIST
mode, the CPU is not writing instructions directly into the FPORT so the bus response timer does not time-out if
the FPORT controller hangs.

2.2.1 Control and Status Registers

The FSCC has no hardware implemented control or status registers which are independent of the associated
controllers. Refer to the appropriate controller description for register definitions. Since the FSCC’s slave
interface is software driven, any FASTBUS CSR register may be defined in software.

2.2.2 Error Responses

The FPORT Controller normally monitors the FASTBUS exception logic. When a FASTBUS error or FASTBUS
Reset is detected, the controller will terminate its current operation and return to an idle state. If another
FASTBUS instruction is pending (Processor pipelined mode), the FPORT Controller will return Processor
DSACK immediately to clear the bus and allow interrupt processing. The instruction which was pending will not
be executed. If the FPORT Controller fails to recognize an error and return control to the Processor, the Processor
will eventually time-out with a BUS ERROR exception. This can happen, for example, if the address/data cycle
timer is disabled and no FASTBUS acknowledge is received.

FASTBUS exceptions can be cleared by asserting the parallel port FASTBUS clear error (FCLERR) signal. The
FASTBUS interrupt vector must be programmed and the interrupt enabled to allow recognition of FASTBUS
exceptions.

Because FASTBUS operations can be queued, a FASTBUS error interrupt may not apply to the current processor
data cycle. For example, a FASTBUS block transfer can be initiated and then followed by any number of non-
FASTBUS processor operations while the block transfer takes place. A FASTBUS error during the block transfer
generates an interrupt which may be unrelated to the current processor activity. For any FASTBUS interrupt, the
parallel port status lines must be examined to determine the cause of the interrupt.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 21

If a FASTBUS error occurs while the FPORT is operating in LIST mode, the List Sequencer tags the event as bad
by setting the Bad_Event bit in the Header word of the current event. The error is then cleared and the sequencer
attempts to continue executing the list.

2.2.3 Interrupts

A 68901 multifunction peripheral provides the vectored interrupt control. 16 interrupt conditions are prioritized by
the 68901. Eight of these conditions are internal to the 68901, and eight are connected to the 68901’s GPIP
(General Purpose I/O Interrupt Port) inputs. Interrupts for the following GPIP inputs are defined on FSCC’s;

Table 7 Hardware Interrupts

Interrupt Line Name Function
GPIP7 TFIFOOR TFIFO Output Ready (rising edge)
GPIP6 RTCREQ* Real-time Clock (falling edge)
GPIP5 ETHREQ Ethernet (rising edge)
GPIP4 SERREQ* Serial Port (falling edge)
GPIP3 FBERR* FASTBUS error (falling edge)
GPIP2 AUXREQ* OPORT Controller (falling edge)
GPIP1 FBREQ* FASTBUS request (falling edge)
GPIP0 FPCREQ* FASTBUS Port Controller (falling edge)

* Active low signal.

Interrupt vectors are programmable and interrupts can be separately enabled, disabled or masked in the 68901
controller. Refer to the Motorola 68901 manual for register definitions. The 68020 interrupt mask is hardwired to
IPL2, which corresponds to a interrupt level of 4, and is not used except to enable or disable all interrupts.

TIFIFOOR-GPIP7: The Trigger FIFO’s Output Ready line is connected to IRQ7. The 68901 will see an active
edge on the Output Ready line and generate an interrupt, when the first Trigger Strobe clocks the FIFO, and
each time an End Of Event instruction clocks a word out of the Trigger FIFO.

RTCREQ*-GPIP6: The real-time clock (Dallas Semiconductor DS1386-8) can be programmed to generate periodic
interrupts at a rate of 10 msec to 100 seconds. It can also be programmed to interrupt on a specific date or/and
time.

ETHREQ-GPIP5: This is the Ethernet message interrupt. Ethernet messages are buffered by the controller in Dual-
Port memory so immediate interrupt response is not required.

SERREQ*-GPIP4: The serial ports can be programmed to generate interrupts when the receive buffer is loaded or
the transmit buffer is empty.

FBERR*-GPIP3: FASTBUS error conditions result in a processor interrupt when enabled. The conditions are:
1)FASTBUS time-out-failure of a slave module to respond within 3 µs on an address or data cycle. This error
can be disabled through the short timer enable bit (STEN) in parallel port 2.
2)FASTBUS SS errors-SS responses of 1,2,3,4,5,6 or 7 on a Address cycle or 1,3,4,5,6, or 7 on a Data cycle
will cause a FASTBUS error interrupt. The last non-zero value of SS is latched at parallel port 2 (FLSS0,
FLSS1, FLSS2).
3)Data FIFO overflow.

AUXREQ*-GPIP2: OPORT request to processor. The Output Port Controller Interface can be EPROM
programmed to cause this interrupt on Step Acknowledge, Permit in received, or on any combination of these
two events.

FBREQ*-GPIP1: (External) FASTBUS request-This interrupt is generated when the FSCC is accessed as a slave or
when a FASTBUS Service Request (SR) or FASTBUS Reset (RB) is issued. RB does not directly reset the
processor. A processor reset can be generated by software in the RB interrupt handler. RB does not cause an
interrupt if it is being driven by the FSCC itself.

FSCC Hardware Manual Version PC4b

22 November 1, 1995

FPCREQ*-GPIP0: The FPORT controller can be programmed to assert an interrupt request at any time. In the
current standard FASTBUS instruction set, the FPORT controller is programmed to generate this interrupt at
the End of Block in Block and Pipelined transfers. In the current List Mode FASTBUS instruction set, an
FPCREQ interrupt instruction can be inserted at any point in the list.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 23

3. Communication Interfaces

The IEEE 802.3/Cheapernet (10BASE2) interface physical connection is through a front-panel BNC connector.
The Intel 82586 coprocessor interfaces to the 68020 through a 2K by 32 bit dual-ported memory. This
configuration allows both processors to operate independently and is necessary to avoid buffer overrun if the 68020
is unable to process interrupts for extended periods. It also improves the speed of FASTBUS operations since
there is no contention on the processor bus.

Two standard RS-232 serial ports (Signetics 68681 DUART) are provided for development and diagnostic use.
One of these will be connected to a terminal, PC, or Work Station. The other can serve as a link to a host machine.
Data rates to 9600 baud will be supported. Operation of these ports is controlled by on-board software. At module
initialization, the ports are configured for 9600 baud using XON / XOFF protocol. Refer to the 68681 data sheet
for register definitions. The Host port connector is wired as a null-modem port.

FASTBUS is accessed through the crate segment backplane. All FASTBUS operations are performed by a
microsequencer as directed by the processor. A sequence of FASTBUS transfers may be performed to the Data
FIFO’s or to the Processor FIFO’s without processor intervention.

The Output Port is controlled by a microsequencer which is directed by the processor. A transfer may be initiated
and proceed unattended. The Output Port transfers data through the Auxiliary connector of the backplane.
Personality cards, which plug into the auxiliary connector from the rear of the FASTBUS crate are available for
standard protocols. Specifications for available personality cards are included as appendixes to this document.

3.1 FASTBUS Interface (FPORT)

The FASTBUS Port Controller (FPORT) provides most of the low-level control of FASTBUS operations, based
on simple memory-mapped instructions from the processor. It consists of two sets of three parallel EPS448
programmable sequencers plus assorted PLD's. The two sets of sequencers allows the FPORT to operate in one of
two user selectable modes. Normal Mode, and List Mode. Normal or Processor mode is the default mode of
operation. In Normal Mode, instructions are passed from the processor to the FPORT controller one at a time.
Each instruction passed to the FPORT is individually acknowledged either after or during execution (depending on
the instruction). In List Mode, the FPORT operates similarly to Normal Mode, but the FASTBUS instructions are
loaded into the List FIFO memory. The List Sequencer is then enabled, and execution of the list of FASTBUS
instructions is executed without processor intervention. Instructions are provided to allow self repeating lists
which execute upon receipt of a Front Panel Trigger Strobe. Normal Mode allows a limited amount of FASTBUS
data manipulation, and better error source determination over List Mode. List mode allows the FPORT and
OPORT to work to read-out data and output it without processor intervention. List mode is usually faster due to
elimination of CPU overhead.

The EPS448 is EPROM programmable and the instruction set cannot be modified by the processor. FPORT
Controller output signals are defined Table 9. The EPS448 is limited to 256 states, of which only 64 support
conditional branching. Therefore, the standard sequencer will directly execute only FASTBUS primitive
operations. Two 68230 parallel ports provide status and control communication between the processor and the
FASTBUS control logic. Parallel port lines are defined in Table 8 ("I" in the first column indicates an input signal,
"O" indicates an output, "S" indicates a special function pin)

Port data direction and signal states are individually programmable. The software should avoid defining or driving
INPUT pins as OUTPUTs, since multiple drives on the same signal line can cause circuit damage. If in doubt,
leave ports in the normal power-on reset configuration.

FSCC Hardware Manual Version PC4b

24 November 1, 1995

Table 8 Parallel Port Bit Definitions

Parallel Port 1
Input/Output Bit Signal Function
I A0 FRRD FASTBUS received RD
I A1 FRDS FASTBUS received DS
I A2 FRMS0 FASTBUS received MS0
I A3 FRMS1 FASTBUS received MS1
I A4 FRMS2 FASTBUS received MS2
I A5 FRAK FASTBUS received AK
I A6 FRDY FASTBUS master
I A7 FSLV* FASTBUS slave mode

I B0 TRIG0 Trigger Vector 0 All Port B inputs are latched
I B1 TRIG1 Trigger Vector 1 on the rising edge of the
I B2 TRIG2 Trigger Vector 2 trigger input strobe.
I B3 TRIG3 Trigger Vector 3
O B4 FP0 Front Panel 0 Front Panel differential RS-485
O B5 FP1 Front Panel 1 Outputs
O B6 FP2 Front Panel 2
O B7 FP3 Front Panel 3

O C0 PRS* Processor FIFO reset
I C1 PEF* Processor FIFO empty
O C2 COPYEN Processor FIFO copy enable
O,S C3 WDTO* "Watchdog" time-out
O C4 DRS* Data FIFO reset
O C5 DRT* Data FIFO retransmit
O C6 SRS* Sequencer List FIFO reset
I C7 DFF* Data FIFO overflow

Parallel Port 2
Input/Output Bit Signal Function
O A0 FDGK FASTBUS drive GK
O A1 FDRB FASTBUS drive RB
O A2 FDSS0 FASTBUS drive SS0
O A3 FDSS1 FASTBUS drive SS1
O A4 FDSS2 FASTBUS drive SS2
I A5 CSR/DATA* FASTBUS MS0 latched at AS(u)
O A6 LFIFOEN List FIFO Enable
O A7 LCEN Local Counter Enable

I B0 SSTAT0 Sequencer status 0
I B1 SSTAT1 Sequencer status 1
I B2 SSTAT2 Sequencer status 2
I B3 SSTAT3 Sequencer status 3
I B4 FRSR FASTBUS SR
O B5 LRT* List FIFO Retransmit
O B6 FCLERR FASTBUS Clear Errors
O B7 SNRESET* FPORT Controller Reset

O C0 STEN Short timer enable
I C1 STO* Short time-out
I,S C2 LTEN Long timer enable
O,S C3 LTO* Long time-out
I C4 FLSS0 FASTBUS latched SS0
I C5 FLSS1 FASTBUS latched SS1
I C6 FLSS2 FASTBUS latched SS2
I C7 FRESET* FASTBUS reset

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 25

Table 9 FPORT Sequencer Output Bits

Bit Name Function
EPS448-3 F00 SMUX0 Select sequencer condition code set 0

F01 SMUX1 Select sequencer condition code set 1
F02 SMUX2 Select sequencer condition code set 2
F03 FDSACK* Processor data strobe acknowledge
F04 SSTAT0 Sequencer status bit 0
F05 SSTAT1 Sequencer status bit 1
F06 SSTAT2 Sequencer status bit 2
F07 SSTAT3 Sequencer status bit 3
F08 CCLERR Controller Clear Error
F09 TIMER Short timer enable
F10 CEOE Control "End-of-Event"
F11 DEOE Data "End-of-Event"
F12 FCLK Global word counter clock
F13 STATCLK Sequencer status clock
F14 SR* Sequencer List FIFO read
F15 PFIFOEN Processor FIFO input enable

EPS448-2 F00 FSAS FASTBUS set AS
F01 FCAS FASTBUS clear AS
F02 FSDS FASTBUS set DS
F03 FCDS FASTBUS clear DS
F04 FSDK FASTBUS set DK
F05 FCDK FASTBUS clear DK
F06 FDWT FASTBUS drive WT
F07 FDMS0 FASTBUS drive MS0
F08 FDMS1 FASTBUS drive MS1
F09 FDMS2 FASTBUS drive MS2
F10 FDRD FASTBUS drive RD
F11 FDEG FASTBUS drive EG
F12 MUX3* List Instruction Select
F13 FEOBA FASTBUS EOB Acknowledge
F14 FREQ FASTBUS request bus
F15 FREL FASTBUS release bus

EPS448-1 F00 DFIFOEN Data FIFO input enable
F01 FPCREQ* Sequencer Interrupt Request (TRAP)
F02 FCOE* FASTBUS control output enable
F03 FDOE* FASTBUS data output enable
F04 SDG* Data pipeline latch enable
F05 DSBA Data pipeline latch B->A mode control
F06 DCPBA Data pipeline latch B->A clock
F07 DSAB Data pipeline latch A->B mode control
F08 SDCPAB Data pipeline latch A->B clock
F09 DDIR Data pipeline latch direction
F10 SPOE* Processor transceiver output enable
F11 SDW Data FIFO write
F12 SRT* Sequencer List FIFO retransmit
F13 SLCOE Local word counter output enable
F14 LC0 Local word counter control 0
F15 LC1 Local word counter control 1

FSCC Hardware Manual Version PC4b

26 November 1, 1995

Table 10 shows a list of supported memory mapped FASTBUS master operations permitted by the standard
FPORT sequencer instruction set.

Table 10 Normal Mode FASTBUS Instructions

FPORT Base addresses for PC4a FSCC’s:
SLOWBASE EQU $01C00000
FASTBASE EQU $01B80000
USRBASE EQU $01E80000

Address (HEX) FASTBUS Operation Status Code
SLOWBASE+300 BUS_ARBITRATE 1
FASTBASE+004 BUS_RELEASE 2

FASTBASE+304 ADDRESS_DATA_GEOGRAPHICAL 3
FASTBASE+308 ADDRESS_CSR_GEOGRAPHICAL 3
FASTBASE+30C ADDRESS_DATA_LOGICAL 3
FASTBASE+310 ADDRESS_CSR_LOGICAL 3
FASTBASE+314 ADDRESS_DATA_BROADCAST 3
FASTBASE+318 ADDRESS_CSR_BROADCAST 3
FASTBASE+31C ADDRESS_RELEASE 4

SLOWBASE+320 DATA_PROCESSOR_RANDOM_READ 5
FASTBASE+324 DATA_PROCESSOR_RANDOM_WRITE 5
SLOWBASE+328 DATA_PROCESSOR_SEC_ADDRESS_READ 6
FASTBASE+32C DATA_PROCESSOR_SEC_ADDRESS_WRITE 6
SLOWBASE+008 DATA_PROCESSOR_BLOCK_TRANSFER_READ 5
FASTBASE+00C DATA_PROCESSOR_BLOCK_TRANSFER_WRITE 5
FASTBASE+330 DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE 5
FASTBASE+334 DATA_FIFO_BLOCK_TRANSFER_READ 7
FASTBASE+338 DATA_FIFO_PIPELINED_READ_100 8
FASTBASE+33C DATA_FIFO_PIPELINED_READ_200 8
FASTBASE+340 DATA_FIFO_PIPELINED_READ_400 8

FASTBASE+020 SEQUENCER_NULL C
SLOWBASE+028 BULB_TEST B

SLOWBASE+010 LOCAL_COUNTER_LOAD 9
SLOWBASE+014 LOCAL_COUNTER_READ 9
SLOWBASE+018 FIFO_WRITE_DATA A
SLOWBASE+024 END_OF_EVENT E
SLOWBASE+02C END_OF_EVENT_REXMIT E

Table 11 gives a list of supported slave instructions. Slave instructions are not supported in List Mode.

Table 11 Normal Mode FASTBUS Slave Instructions

SLOWBASE+01C SLAVE_DATA_INPUT D
FASTBASE+344 SLAVE_DATA_OUTPUT D

The following instruction has an effect only if executed after sequencer reset and before any other FASTBUS
instruction is executed. If executed any other time, it has the same effect as a NULL instruction.

USRBASE+020 USER_SEQUENCER_SELECT C

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 27

Refer to Appendix A for detailed instruction definitions.

3.1.1 FASTBUS Controller Operation
Since the 68020 is an asynchronous processor, when it initiates a processor bus cycle it must wait for an
acknowledge signal before continuing with the next bus cycle. The FASTBUS instructions Table 10 are seen by
the processor as functioning in one of two ways. "Fast" instructions return the processor data acknowledge signal
immediately upon being invoked (a memory mapped instruction is invoked by addressing it), whereby "Slow"
instructions do not return the processor data acknowledge until later in the microsequencer routine. The 68020 is
held in the middle of a bus cycle, unable to execute any other instructions until the acknowledge signal becomes
true. Therefore, slow FASTBUS instructions are used only where necessary. An example is the
DATA_PROCESSOR_RANDOM_READ instruction. This instruction does not return the acknowledge signal
until it has received and latched the data received from the FASTBUS slave. The 68020 sees the instruction
similarly to a simple 32-bit memory read. If the FASTBUS short timer is enabled and the slave does not respond,
the time-out would cause the processor data acknowledge to be returned, the current FASTBUS instruction to be
aborted, and a 68020 interrupt. If the short timer is not enabled, the long timer would eventually time out, and
cause a 68020 bus error exception. The FASTBUS sequencer would then have to be reset since it would still be
waiting for the slave to respond. In general, instructions which return data immediately to the 68020 are slow
instructions. All other instructions are fast instructions. Slow instructions can be identified by their base address
of 01C00000, fast instructions have a base address of 01B80000.

3.1.2 FASTBUS Arbitration
The FSCC supports standard and assured access arbitration. It does not support prioritized arbitration. Bits 0-5 of
the processor data bus contain the arbitration vector. Bit 7 determines whether the assured access protocol is
active. Bit 6 and 8-31 are ignored. These bit assignments correspond to CSR 8. A FASTBUS arbitration can be
performed by a processor instruction of the form -

MOVE.L CSR8 , BUS_ARBITRATE

Since BUS_ARBITRATE is a slow instruction, the processor does not receive its acknowledge until the
FASTBUS arbitration cycle has been won. If the arbitration cycle is not won before the long timer times out, a bus
error will occur. The bus can also be acquired simply by asserting the GK line through the parallel port. Note that
this is not a standard FASTBUS operation and is provided only for single master systems without ancillary logic.

3.1.3 FASTBUS Reset Bus (RB)
The Processor can issue a FASTBUS RB (Reset Bus) signal directly through the parallel port. In this case the
parallel port GK signal should be asserted simultaneously. RB does not cause a processor interrupt when it is
driven by the FSCC itself.

3.1.4 FASTBUS Slave Mode Operation
The FSCC supports a limited slave mode through processor emulation. Geographical address recognition logic is
contained in hardware. All other slave functions are controlled by the processor. FASTBUS WT is asserted on
each DS transition. The data cycle response time is dependent on software and is typically 10-15 µsec per
FASTBUS word.

Accessing the FSCC as a slave causes a Processor interrupt. The processor must poll the DS, MS, RD, AK, and
CSR/DATA* lines via parallel port inputs. The SS response is then placed on the bus via parallel port outputs and
a slave mode input or output operation is executed by the sequencer. The CSR/DATA* line reflects the status of
MS0 which has been latched during the address cycle.

The two FASTBUS Slave instructions cause a single word of data to be transferred between the processor and
FASTBUS with an associated DK transition. WT is released prior to the DK transition and is reasserted on the
next DS transition. Any FASTBUS CSR or DATA location can be defined by processor software.

FSCC Hardware Manual Version PC4b

28 November 1, 1995

The FSCC is limited in its ability to execute master and slave operations simultaneously, since the processor is
involved in both cases. There is normally no need for the FSCC to address itself, with the possible exception of
crate mapping. If the FSCC does address itself, the slave logic will attach (return AK) but no data cycles will be
possible. A slave mode interrupt is generated and the processor software must then recognize the simultaneous
master/slave condition by examining the parallel port FSLV* bit. The software should bypass any FASTBUS data
cycles and retrieve the information directly from internal memory.

3.1.5 List Mode FASTBUS Operation
LIST Mode FASTBUS operation was enhanced on PC4 boards (carried over to PC4a/b modules) by adding 8 bits
to the 32-bit wide List FIFO to allow instructions to be stored in the list as well as data operands. This allows the
LIST FIFO to be used similarly to PC3 versions with the added flexibility of being able to change the instruction
list without developing special application-specific microcode. All PC4b FSCC’s are assembled with generic LIST
FIFO driver microcode installed in the user microsequencer sockets on the board. This microcode works similarly
to the standard microcode except that, when enabled, it takes its FASTBUS instructions and data from the LIST
FIFO instead of the 68020 directly.

The LIST FIFO is controlled by three parallel port bits. The SRS* bit is a low true reset bit for the LIST FIFO.
To reset the LIST FIFO the SRS* bit must be pulsed low with two processor writes to parallel port 1 bit C6. The
second LIST FIFO control bit in the parallel port is the LFIFOEN bit. LFIFOEN is a high true signal which
enables the data path between the LIST FIFO and the FPORT controller (Parallel Port 2 bit A6). The third parallel
port bit controlling the LIST FIFO is the LRT* bit (Parallel Port 2 bit B5). This bit is the low true retransmit bit to
the LIST FIFO chips. When pulsed low, it causes a previously executed list to be executed again.

The FASTBUS master operations listed in Table 10 are permitted by the PC4b LIST FIFO sequencer instruction
set. The List Mode FASTBUS instruction set description is included as an appendix to this document.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 29

Table 12 List Mode FASTBUS Instructions

FPORT List FIFO Base addresses for PC4b FSCC’s:
LISTBASE EQU $01E00000
USRBASE EQU $01E80000

Address(HEX) FASTBUS Operation Status Code
LISTBASE+300 BUS_ARBITRATE 1
LISTBASE+004 BUS_RELEASE 2

LISTBASE+304 ADDRESS_DATA_GEOGRAPHICAL 3
LISTBASE+308 ADDRESS_CSR_GEOGRAPHICAL 3
LISTBASE+30C ADDRESS_DATA_LOGICAL 3
LISTBASE+310 ADDRESS_CSR_LOGICAL 3
LISTBASE+314 ADDRESS_DATA_BROADCAST 3
LISTBASE+318 ADDRESS_CSR_BROADCAST 3
LISTBASE+31C ADDRESS_RELEASE 4

LISTBASE+320 DATA_RANDOM_READ 5
LISTBASE+324 DATA _RANDOM_WRITE 5
LISTBASE+328 DATA _SECONDARY_ADDRESS_READ 6
LISTBASE+32C DATA _SECONDARY_ADDRESS_WRITE 6
LISTBASE+00C DATA _BLOCK_TRANSFER_WRITE 5
LISTBASE+330 DATA _BLOCK_TRANSFER_TERMINATE 5
LISTBASE+334 DATA _BLOCK_TRANSFER_READ 7
LISTBASE+338 DATA _PIPELINED_READ_100 8
LISTBASE+33C DATA _PIPELINED_READ_200 8
LISTBASE+340 DATA _PIPELINED_READ_400 8
LISTBASE+344 DATA_RANDOM_READ_TO_LOCAL_COUNTER 5
LISTBASE+348 DATA _BLOCK_READ_LEADING_WORD_COUNT 7

LISTBASE+02C TRIGGER_HOLD C
LISTBASE+044 TRIGGER_HOLD_WITH_HALT_REQUEST C
LISTBASE+030 INSTRUCTION_LIST_RE-EXECUTE B
LISTBASE+01C GENERATE_FPCREQ (IRQ) A
LISTBASE+034 POLL_HALT_REQUEST 0
LISTBASE+038 DELAY2 (2 microseconds) B
LISTBASE+03C DELAY10 (10 microseconds) B
LISTBASE+040 DELAY100 (100 microseconds) B

LISTBASE+020 SEQUENCER_NULL C
LISTBASE+028 BULB_TEST B

LISTBASE+010 LOCAL_COUNTER_LOAD 9
LISTBASE+014 LOCAL_COUNTER_READ 9
LISTBASE+018 FIFO_WRITE_DATA A
LISTBASE+024 END_OF_EVENT E

FB_ERROR F

The following instruction has an effect only if executed after sequencer reset and before any other instruction is
executed. If executed any other time, it has the same effect as a NULL instruction.

USRBASE+020 USER_SEQUENCER_SELECT C

FSCC Hardware Manual Version PC4b

30 November 1, 1995

Initializing the LIST FIFO is done in four steps:

1) Reset the LIST FIFO by pulsing the SRS* bit. (Recommended but not necessary if FIFO is known to be
empty).

2) Load an instruction stream into the List FIFO using the instructions in Table 12 (LFIFOEN should be
false while List FIFO is loaded).

3) Enable the LIST microsequencer by accessing the address: FPORTUSR+020. (Only needs to be done
once after reset, must be done before any FASTBUS instructions are executed and must be done while
LFIFOEN is false. Has no effect if executed more than once).

4) Enable the LIST FIFO by setting the LFIFOEN bit true. The FPORT controller will then start executing
the list.

* Sample crate readout program using the LIST FIFO:

* PP1CDATA is parallel port 1C’s data register
* Reset LIST FIFO.

ANDI.B #$BF,PP1CDATA *Set LIST FIFO Reset bit true
ORI.B #$40,PP1CDATA *Clear LIST FIFO Reset bit.

* Load LIST FIFO with FASTBUS instruction stream.

MOVE.L #0,LIST_POLL_HALT_REQUEST *test for halt req. from CPU
MOVE.L #0,LIST_TRIGGER_STROBE_HOLD *wait for a trigger
MOVE.L #0,LIST_DELAY2 *delay 6 microseconds
MOVE.L #0,LIST_DELAY2
MOVE.L #0,LIST_DELAY2

MOVE.L CSR8,LIST_BUS_ARBITRATE *Arbitrate

MOVE.L PRIMADD1,LIST_ADD_DATA_GEO *Address first slave
MOVE.L SECADD1,LIST_SEC_ADD_WR *Secondary address
MOVE.L WORDCNT1,LOCAL_COUNT_LOAD *Load Local Word Counter
MOVE.L #0,LIST_FIFO_BLOCK_READ *Block read to data FIFO
MOVE.L #0,LIST_ADDRESS_RELEASE *Address Release

MOVE.L PRIMADD2,LIST_ADD_DATA_GEO *Address second slave
MOVE.L SECADD2,LIST_SEC_ADD_WR *Secondary address
MOVE.L WORDCNT2,LOCAL_COUNT_LOAD *Load Local Word Counter
MOVE.L #0,LIST_FIFO_BLOCK_READ *Block read to data FIFO
MOVE.L #0,LIST_ADDRESS_RELEASE *Address Release

MOVE.L PRIMADD3,LIST_ADD_DATA_GEO *Address third slave
MOVE.L SECADD3,LIST_SEC_ADD_WR *Secondary address
MOVE.L WORDCNT3,LOCAL_COUNT_LOAD *Load Local Word Counter
MOVE.L #0,LIST_FIFO_BLOCK_READ *Block read to data FIFO
MOVE.L #0,LIST_ADDRESS_RELEASE *Address Release

MOVE.L #0,LIST_BUS_RELEASE *Bus Release

MOVE.L #0,INSTRUCTION_LIST_RE-EXECUTE *repeat list

* Enable User microsequencer (switch FPORT controller from standard microcode

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 31

* to LIST microcode).
ANDI.B #$7F,PP2BDATA *reset FPORT controller
ORI.B #$80,PP2BDATA

MOVE.L #0,USR_SEQUENCER_SELECT *FPORT User Sequencer Select

* Enable List FIFO (List execution will start after this instruction is executed)
ORI.B #$40,PP2ADATA *Set PP2A bit 6 high (LFIFOEN)

The List Sequencer can continuously execute the same list repeatedly. This is done by putting an
INSTRUCTION_LIST_RE-EXECUTE instruction at the end of the FASTBUS instruction list in the List FIFO.
When the List Sequencer sees the re-execute instruction, it toggles the RETRANSMIT input to the List FIFO.
This causes the FIFO to reset its internal pointers, and list execution begins at the first list instruction.

To execute a graceful halt of the List Sequencer while operating in a self re-executing list, a
POLL_HALT_REQUEST instruction may be inserted at any convenient point in the list. When executed, the List
Sequencer checks for an FPORT List Halt Request from the processor. An FPORT List Halt Request instruction is
a memory mapped CPU instruction. It is executing by reading this memory location (See Table 6). Execution of a
Halt_Request CPU instruction sets a status flag that the List Sequencer can test. The processor is then paused in
the middle of a cycle, waiting for an acknowledge from the List Sequencer. When the List Sequencer executes the
POLL_HALT_REQUEST instruction, the status flag is tested. If it is true, the sequencer returns the processor
acknowledge and halts. If the flag is not true, list execution continues at the next instruction. If the
POLL_HALT_REQUEST instruction is not executed within the Long Timer timeout period, then a 68020 Bus
Error Exception will result. If a second FPORT List Halt Request instruction is executed after the List Sequencer
has already been halted, it does not return an acknowledge and a Bus Error Exception occurs. A Bus Error
Exception will also result if a Halt_Request CPU instruction is executed and the FASTBUS Sequencer is not in
List mode.

3.1.6 Data Transfer Description and Transfer Rates

The FSCC supports FASTBUS Pipelined Transfer rates of 100, 200 and 400 nsec per word. At the 100 nsec per
word rate, End-of-Block is not normally returned in time to avoid another DS transition. Therefore, Pipelined
transfers at 100 nsec may read one word beyond the end of block and this word will be included in the output data
stream.

The FSCC also supports Block Transfers at a rate of ~150 nsec per word. The actual transfer rate will be 100 nsec
plus the slave DS-DK response time, rounded to the next highest 50 nsec increment.

Block and Pipelined Transfers directed to the Data FIFO are functional for Read mode only. Data is placed in the
FIFO and is not accessible to the Processor. However, data can be simultaneously routed to the Processor FIFO by
setting the COPYEN bit in the parallel port. A Block Transfer Read/Write instruction for Processor memory is
available, but operates at the same speed as single word Processor read and write operations. It implements one
step of the block transfer for each processor MOVE instruction executed. The processor memory block transfer
must be terminated with a DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE instruction.

Although the Data FIFO is limited to blocks of 4094 on PC4b boards, larger blocks can still be transferred
provided that the destination is capable of interpreting a word count of 4094 as a partial transfer. For block
transfers which are some exact multiple of 4094 words, a final block of length zero must be transferred.

FSCC Hardware Manual Version PC4b

32 November 1, 1995

3.1.7 Internal Control and Status Registers

All Control and Status Registers related to FASTBUS operation are implemented in 68020 software. The number
of registers is limited only by available processor memory.

3.1.8 Error Responses

The FPORT Controller latches FASTBUS error conditions but does not attempt any recovery or retry. A processor
interrupt is generated and the processor has the option of attempting recovery or, more likely, skipping the entire
readout sequence. Because of internal pipelining, errors may not be reported immediately with the bus cycle
generating the error. Also, the amount of status information available to the processor is limited.

The standard FASTBUS instructions will abort on errors and return to the processor with an interrupt. The
Standard microcode currently sets an error flag in the header word of the current event to indicate that the
FASTBUS event readout failed and the data should be discarded. Note that an End-of-Event instruction must be
executed before the FASTBUS error is cleared in order for the bad event to be output with the bad event flag set.
If outputting the bad event is not desired, the data FIFO’s and the Output Port Controller may be reset to flush the
event. The FPORT Controller does not have the ability to test status flags in slave modules to locate problems, so
error recovery through microcode is generally limited to reset and continue type operations.

If a FASTBUS error occurs during a readout using the Instruction List FIFO, the bad event flag is set in the header
word (word count word), and the data is immediately output. Any further readout of this event is not attempted.
The List microcode then clears the FASTBUS error flag, and continues on with the next list instruction. The bad
event flag is bit 17 of the first word (word count word) of the data stream.

3.2 Ethernet

The INTEL 82586 LAN coprocessor performs message framing management in transmission and reception
functions. It acts as a bus master, accesses memory by DMA, carries out message error checking, collision
recovery functions, etc. The INTEL 82C501 Ethernet Serial Interface (ESI) implements Manchester
encoding/decoding and clock recovery. ESI functionality may be checked by the processor using Loopback mode.
The National DP8392 Ethernet Transceiver performs collision detection and interfaces to the coaxial cable.

3.2.1 Ethernet Interface

The INTEL 82586 coprocessor interfaces indirectly to the 68020 CPU system through a 4K by 16 bit dual ported
memory. Figure 4 is a Block Diagram of the Ethernet Interface.

The dual port RAM speeds up both systems as the processor does not release the bus each time a DMA occurs,
and controller bus latency is reduced to zero.

Direct interface is provided with CA (Channel Attention) and IRQ (Interrupt Request) lines. The 68020 CPU
drives CA to get the attention of the controller, indicating that new commands were included in the command list
to be processed.

The 82586 Ethernet controller uses IRQ to interrupt the processor when a command is complete or upon message
reception.

Loop-Back mode through the 82C501 can be enabled by writing to the Loop-Back enable register, and disabled
by writing to the Loop-Back disable register (see Table 6). Loop-Back through the 82C501 is also disabled by
Reset.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 33

The shared DPRAM structure is composed of four parts: The Initialization Root, the System Control Block
(SCB), the Command List and the Receive Frame Area (RFA). The Initialization Root is fixed in memory. The
Ethernet controller addresses that variable as $FFFFF6, but in fact, due to the partial decoding, its physical
location is DPRAMBASE+$1FF6. The base address of the DPRAM from the CPU side is listed in Table 6, and
is $0000 from the Ethernet controller. Transmission and reception messages are split into small buffers to better
use the available memory. The buffers, when necessary, are chained in frames. Transmission and reception
buffer descriptors are accessible through the SCB table pointers.

HOLD

IRQ 5CA

ADD/DATA BUS

S0

S1

A1/12

A1/12

D0/15

D0/15

CS

OE

R/W

BUSY

BUSY

2Kx16

2Kx16

DPRAM

DPRAM

CONTROL
PALS

CONTROLLER

ETHERNET

ADDRE S S
L AT CH

R/W

OE

CS

A
L

E

6 80 2 0 Bus

DB1 6 -3 1

DB0 -15

AD2 -12

AD2 -12

Figure 4 Ethernet Interface Block Diagram

3.2.2 Ethernet Controller Interface

The interface between the Ethernet controller and the dual ported RAM uses a 16-bit address latch implemented in
74Fxx series logic to demultiplex the Address and Data lines, and a state machine implemented in two 22V10
PALs to control the memories and the latch. The state diagram is shown in Figure 5. The PC4/a/b interface and
the PC3 interface are functionally identical from both the point of view of the 68020 and of the 82586, so software
for the two interfaces is the same.

FSCC Hardware Manual Version PC4b

34 November 1, 1995

3.2.3 Timing Diagrams

The Ethernet controller was designed to share an external bus, it asserts a HOLD line to keep the bus when
performing burst memory cycles. In this implementation the controller has a private bus to the DPRAM, so hold
acknowledge HLDA is returned instantaneously, and the state machine goes directly to IDLE to wait for the
beginning of a cycle.

S1 and S0, from the Ethernet controller indicate the type of cycle the 82586 is attempting: S1=0, S0=1 is a read
cycle and S1=1, S0=0 is a write cycle. Those lines are driven only during T1 and T2. The interface state machine
has a separate path for write and read operations.

Figure 6 and Figure 7 show timing diagrams for 82586 read and write cycles.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

HOLD

Write Cycle Read Cycle

S0

OLE

BUSY

CSWR

CSWR

CSWR

BUSY

S1

OLE CSOE

CSOE

CSOE

CSOE

BUSY

BUSY

BUSY

BUSY

BUSY

BUSY

BUSY

BUSY

BUSY

BUSY

Figure 5 Ethernet Controller State Diagram

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 35

15148 131211109

CSX

R/W

OLE

WE1

DATAADDRESS

ADD 1-12

A/D 0-15

S1

S0

T4T3T2T1T0

8 8

Figure 6 Ethernet Controller Read Cycle

FSCC Hardware Manual Version PC4b

36 November 1, 1995

8148 131211109

A/D 0-15

S1

S0

WE2

WE1

CS

R/W

DATA

VALID DATA

ADDRESS

ADD 1-12

T4T3T2T1T0

DB 0-15

8 15

Figure 7 Ethernet Controller Write Cycle

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 37

3.3 Description and Operation of OUTPUT PORT (OPORT)
The basic function of the Output Port Controller (OPORT) is to provide a continuous stream of data with strobes
for transmission via RS-485 buffers on the auxiliary card. A Block diagram of the Output Port is shown in Figure
8. For this application, it need only multiplex the Control FIFO and Data FIFO outputs and generate appropriate
timing. The control FIFO contains the H&C Word (Word Count and Header bits), and the data FIFO contains the
event data stream. When End-Of-Event is received from the FASTBUS controller, the OPORT controller pulls
one word out of the control FIFO and outputs it. It then pulls data words out of the data FIFO until the Data End-
Of-Event word (Event Delineation flag) is seen at the Data FIFO output. Connection to more complicated external
bus formats will require reprogramming of the OPORT Controller or addition of a more sophisticated sequencer on
the auxiliary card.

All levels at the output port are single ended TTL. Level adapters to different protocols will be mounted on the
FASTBUS auxiliary card. The data path is 32 bits wide. Two control lines are provided to regulate data flow: the
WAIT input pauses the OPORT and STROBE is a synchronous data strobe output.

In some applications the auxiliary bus (OPORT data cable) will be common to several FSCC modules. The
PERMIT_IN and PERMIT_OUT front panel connections provide a "token passing" mechanism for enabling and
disabling data output. The first FSCC in the token chain is designated “first” by setting the appropriate OPORT
mode (see Table 13). Permit_Out of the “first” FSCC is connected to Permit_In of the next FSCC in the chain.
Permit_Out of this module is connected to Permit_In of the next, and so on. Permit_Out of the last module in the
chain is connected to Permit_In of the first module. Each FSCC in the permit chain must have its OPORT
configured in the appropriate mode for its position in the permit chain (first, middle, or last).

To use a single FSCC by itself on a data cable, the OPORT is configured to be “Only” (see Table 13).

The OPORT Controller performs arbitration and control for the Data and Control (Word Count/Header) FIFO
outputs. The operating mode is selected by the processor. PC4a/b FSCC’s are equipped with an OPORT
controller which has a user programmable output rate. Rates of 10 MHz, 6.67 MHz, or 5.0 MHz can be software
selected (Table 13).

FSCC Hardware Manual Version PC4b

38 November 1, 1995

3.3.1 OPORT Controller Operating Modes

Bits 2-0 in the OPORT Control register Select one of eight possible OPORT operating modes.

Table 13 OPORT Controller Operating Modes

Mode Hex-Code Function
Disabled $00 OPORT is off-line. Outputs are tri-stated.
Token_Middle $01 OPORT outputs a header and the event data upon receipt of a PERMIT_IN

signal. This mode is usually used for a middle FSCC in a token passing chain.
PERMIT_IN must be received before data is output, and PERMIT_OUT is
generated after outputting an entire event. The EOR output driver is disabled in
this mode.

Token_First $02 OPORT outputs a header and the event data with no PERMIT_IN required for
the first event after configuration. Subsequent events require a PERMIT_IN
before output begins. This mode is usually used for the first FSCC in a token
passing chain. The EOR output driver is disabled in this mode.
PERMIT_OUT is generated after outputting an entire event.

Token_Only $03 OPORT outputs a header and the event data with no PERMIT_IN required. This
mode is used when there is only one FSCC on a data cable, and token passing
is not needed. The EOR output driver is enabled in this mode. EOR is driven
true for ~150ns after each event has been output. PERMIT_OUT is generated
after outputting an entire event.

Rate Select $04 Selecting and then deselecting (set to mode 0) this mode causes the OPORT
controller to output data at a 6.67 MHz rate. Selecting and then deselecting this
mode twice causes the OPORT controller to output data at a 5.0 MHz rate.
Output rate is reset to 10 MHz by resetting the OPORT controller. The data rate
set can be checked by reading the OPORT status code when the OPORT is in
RESET state. OPORT status codes are listed in Table 15.

reserved $05 Same as mode 0.
reserved $06 Same as mode 0.
Token_Last $07 This mode is identical to Token_Middle mode except that the OPORT controller

drives the End_Of_Record signal true for ~150ns after the last data word has
been output, and before the PERMIT_OUT pulse is sent. This mode is usually
used for the last FSCC in a token passing chain. The EOR output driver is
enabled whenever Token_Last mode is set.

Token_Middle: This is the normal data taking mode for a board in the middle (neither first nor last) of the token
passing chain. Data is transmitted to the output daughter card with synchronous, no handshake protocol at the
selected data rate. The data contains a non-inclusive leading word count, (the lower order 12 bits). Bits 12-16 of
this word contain a processor programmable header, usually the Trigger ID, and bit 17 is an error flag. When the
error flag is high, this indicates that the FSCC encountered a FASTBUS error during the read out process, and the
data may be bad or incomplete. Bits 18-31 of the control word are undefined. When in Token_Middle mode, the
OPORT controller waits until the PERMIT_IN pulse has been received. Then the controller waits for a control
word (Header/Word Count) to be loaded into the control FIFO. After these two conditions have been met, data
transmission begins. The header word from the control FIFO (CFIFO) is transmitted first, followed by the
specified number of words from the data FIFO. Transmission ends when the End-Of-Event data word is
encountered. This word is inserted into the data FIFO by the FASTBUS controller when an End-Of-Event
instruction is executed (See FPORT Controller Instruction Set). The OPORT Controller then outputs a PERMIT
OUT pulse, and disabled its outputs. Wait states can be inserted to slow data transmission by software commands
to the OPORT controller. Three different data rates are implemented, the default rate is 10 MHz which provides
40 MBytes per second. The other two user selectable rates are 6.67 MHz, and 5.0 MHz, providing 26.68 MBytes
per second, and 20 MBytes per second respectively. Either of the two optional data rates can be selected by

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 39

toggling the OPORT controller into Rate Select Mode (see Rate Select Mode). Refer to Figure 10 for an example
of Output Port timing in Token_Middle mode.

Token_First: This mode is identical in function to Token_Middle with the exception that the OPORT controller
does not wait for a PERMIT_IN pulse before outputting its first event after configuration. A PERMIT_IN token
must be received before any subsequent events can be output. This mode is generally used for the first FSCC in
the token passing chain. Typically, the Permit Out output of the last board in a token passing chain, will be
connected to the Permit In of the first board in the chain. The first board in the chain will be set in Token_First
mode. After system reset and configuration (assuming appropriate readout code is running), the first readout
trigger will cause the first board in the chain to readout its crate, output its event, and pass the token. The first
board will then wait until it receives the token from the last board, before outputting another event.

Token_Last: This mode is intended for use when the FSCC is placed at the end of the token passing chain. This
mode is functionally equivalent to Token_Middle, except that upon completion of the data transfer, the OPORT
drives the End Of Record output true for 150 ns, before outputting the Permit Out pulse. The EOR output driver is
enabled whenever Token_Last mode is selected.

Token_Only: This mode is intended to be used when the FSCC is the only data source on a data cable. In
Token_Only mode, the OPORT is operating as “First” and “Last” in the permit chain. Actually, PERMIT_IN is
ignored. Data is always output as soon as an End_Of_Event instruction is executed. End_Of_Record is driven in a
similar manor to Token_Last mode.

Rate Select Mode: The default output rate of the OPORT is 10 MHz. Each time Rate Select Mode is selected,
the OPORT reduces its output rate by one step. First from 10 MHz to 6.67 MHz, then from 6.67 MHz to 5.0 MHz.
To set the OPORT into 6.67 MHz mode, Rate Select Mode is selected. The OPORT is then set in the desired
output mode. All subsequent data transfers out of the OPORT will then be at a 6.67 MHz rate until the OPORT is
reset. To reduce the rate to 5.0 MHz, Rate Select Mode must be selected twice. To do this, Rate Select Mode is
first selected. Mode 0 is then selected, and Rate Select Mode is selected again. One of the output modes may now
be selected. Data transfers will now be at 5.0 MHz until the OPORT is reset.

Refer to Figure 9 for a state transition diagram of the OPORT Controller. At power up or RESET, the state
machine is in RESET state. A Rate Select command will cause the next lower speed state machine to be selected.
The 10 MHz, 6.67 MHz, and 5.0 MHz state machines function identically with the exception of either one or two
wait states inserted into the data outputting loop. Receipt of a Token_First or Token_Only mode selection, takes
the controller directly to IDLE, while a Token_Middle or Token_Last mode selection puts the controller into
PINWAIT. A PERMIT_IN will then take the controller from PINWAIT to IDLE. As soon as the control FIFO
has a word in it, the controller will move from IDLE to SETUP state. In SETUP state the control FIFO is read,
and the Mode Group select (MG_SEL) output is driven. The MG_SEL output going true, causes the OPORT’s
CPU interface to provide a second set of Mode inputs to the OPORT controller. The OPORT controller then looks
at the second mode group inputs to see if the Suppress Zero Event mode is selected. If SZE mode is selected, this
means that the SZE bit is set, and the next event in the Data FIFO has no data in it (a Null event). The OPORT
controller then discards the control word, and proceeds to CHKMODE state. If SZE mode is not true, the
controller continues on to LATCH1 state where the control word is latched, and then to STROBE state where it is
strobed out of the port. The state machine then toggles between STROBE, and LATCH2 clocking data out of the
data FIFO, and strobing it out the OPORT. LATCH2 state watches for the Event Delineating flag coming out of
the Data FIFO, and breaks out of the loop when it becomes true. CHKMODE checks to see which mode is set to
determine how to terminate the OPORT operation. If Token_Last mode is selected, DEOR state is executed which
drives the End Of Record output true for 150ns. All other modes cause the state machine to go to PERMOUT state
which drives the Permit Out line true for 300 ns, and then disable its output drivers. The state machine then
proceeds to PERMIN2 state and waits for either a PERMIT_IN token, or a mode change to occur.

FSCC Hardware Manual Version PC4b

40 November 1, 1995

32

18

32Data FIFO
(DFIFO)

Control
FIFO

(CFIFO)
Latch

OPORT
Controller

OPORT
Interface

RESET

MODE 3

8

DB24-31

OPORT SELECT*

READ/WRITE*

AD1

LDS*

IRQ*

To Processor

Permit In

Permit Out

DFIFO READ*
DFIFO EMPTY*
EOE FLAG

CFIFO READ*
CFIFO EMPTY*

To FASTBUS
Auxiliary Connector

From FASTBUS Port Controller
DATA

FCLK

Count
From Header and Counter

CFIFO Write*

CLKCLR

4STATUS

STROBE

WAIT

EOR

DATA

Figure 8 Output Port (OPORT) Block Diagram

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 41

RESET
10MHZ

PERMIN1

IDLE

SETUP

LATCH1

STROBE

LATCH2CHKMODE

DEOR

PERMOUT

PERMIN2

RESET
6.67MHZ

RESET
5.0 MHZ

a

b

c,d

a

b

c

a

b

c

a,c
b

a

b

a,b

c

da

b

a

b

c

Note: 6.67Mhz, and 5.0 Mhz state
machines are identical to the 10Mhz
state machine except that they have
wait states inserted between the
STROBE and LATCHx states as
neccessary to provide the desired
output data rate.

d

Figure 9 Output Port (OPORT) State Machine Diagram

FSCC Hardware Manual Version PC4b

42 November 1, 1995

3.3.2 PC4b OPORT State Machine Pseudo Listing
RESET: a) IF mode=rate select THEN GOTO RESET 6.67

b) ELSEIF mode=Token_First
OR mode=Token_Middle and PERMIT_IN
OR mode=Token_Last and PERMIT_IN
OR mode=Token_Only
THEN status=1 GOTO PERMIN1

c) ELSEIF mode<>Disabled THEN status=1 GOTO RESET
d) ELSE GOTO RESET

PERMIN1: a) IF /PERMIT_IN
OR mode=Token_First
OR mode=Token_Only
THEN status=2, Strobe driver enabled GOTO IDLE

b) ELSEIF mode=disabled THEN status=0 GOTO RESET
c) ELSE status=1 GOTO PERMIN1

IDLE: a) IF mode=disabled THEN status=0 GOTO RESET
b) ELSEIF CFIFO not empty THEN status=3, data drivers enabled, strobe driver enabled, CFIFO read

group select 1 GOTO SETUP
c) ELSE status=2, data drivers enabled, Strobe driver enabled, Clear Output Data Latch, GOTO IDLE

SETUP: status=3, latch data, Data FIFO read, data drivers enabled, Strobe driver enabled, group select 1
CONTINUE

status=3, Data FIFO read, data drivers enabled, Strobe driver enabled, group select 1 GOTO LATCH1

LATCH1: a) IF wait THEN status=4, Data FIFO read, data drivers enabled, Strobe driver enabled, group select 1
GOTO LATCH1

b) ELSEIF mode=Suppress Zero Event THEN status=3, data drivers enabled, Strobe driver enabled,
CONTINUE

c) ELSEIF Data FIFO empty THEN status=5, Data FIFO read, data drivers enabled, Strobe driver
enabled, group select 1 GOTO LATCH1

d) ELSE status=3, Data FIFO read, Data Strobe, data drivers enabled, Strobe driver enabled
GOTO STROBE

status=3, data drivers enabled, Strobe driver enabled GOTO CHKMODE

STROBE: a) IF mode=disabled THEN status=6, latch data, data drivers enabled, Strobe driver enabled
GOTO STROBE

b) ELSE status=3, latch data, data drivers enabled, Strobe driver enabled GOTO LATCH2

LATCH2: a) IF wait THEN status=4, data drivers enabled, Strobe driver enabled GOTO LATCH2
b) ELSEIF Data FIFO empty THEN status=5, data drivers enabled, Strobe driver enabled

GOTO LATCH2
c) ELSEIF end of event flag THEN status=3, data latch clear, data drivers enabled,

Strobe driver enabled GOTO CHKMODE
d) ELSE status=3, data strobe, Data FIFO read, data drivers enabled, Strobe driver enabled

GOTO STROBE

CHKMODE: a) IF mode=Token_First OR Token_Middle THEN status=3, Data FIFO read, Strobe driver enabled
GOTO PERMOUT

b) ELSE status=3, Data FIFO read, Strobe driver enabled JUMP DEOR

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 43

DEOR: status=3 CONTINUE

status=3, end_of_record CONTINUE

status=3, end_of_record CONTINUE

status=3, end_of_record CONTINUE

status=3, end_of_record GOTO PERMOUT

PERMOUT: status=3 CONTINUE

status=3, PERMIT_OUT CONTINUE

status=3, PERMIT_OUT CONTINUE

status=3, PERMIT_OUT CONTINUE

status=3, PERMIT_OUT CONTINUE

status=3, PERMIT_OUT GOTO PERMIN2

PERMIN2: a) IF PERMIT_IN
OR mode=Token_Only
THEN status=1 GOTO PIN2

b) ELSEIF mode=disabled THEN status=0 GOTO RESET
c) ELSE status=1 GOTO PERMIN2

PIN2: a) IF /PERMIT_IN
OR mode=Token_Only
THEN status=1, Strobe driver enable GOTO IDLE

b) ELSEIF mode=disabled THEN status=0 GOTO RESET
c) ELSE status=1 GOTO PIN2

3.3.3 OPORT input/output signals

The processor can control and monitor the OPORT through the eight bit OPORT interface. The following signals
are used to configure and monitor the OPORT.

RESET: This asynchronous line connects directly to the OPORT controller’s hardware reset line. When
held in reset, (low = reset) the OPORT controller disables its output drivers, ignores Permit tokens
and mode selections.

MODE 2-0: OPORT Controller mode select lines.

The OPORT controller drives the following output lines to indicate status conditions to the processor:

MG_SEL: This line is used by the OPORT Controller’s CPU interface to select which mode select group it
should provide to the OPORT controller. By using the MG_SEL line in this way, the mode inputs
to the OPORT controller are multiplexed to allow up to 16 modes to be defined instead of eight.

FSCC Hardware Manual Version PC4b

44 November 1, 1995

SM(0-3): Return the OPORT state machine status.

External interface:
PERMIT_OUT: Enable next device onto the token passing logical ring.
PERMIT_IN: Indicates the token has been received. This input is not latched. The OPORT controller must be

initialized (set to an event mode) before it can recognize a Permit In.
STROBE: Signals active data on the pipeline latches, the rising edge is used to strobe that data into the

personality card. Current personality cards invert the Strobe signal before using it to drive the
RS-485 Strobe output.

WAIT: Pauses data transmission when true. WAIT is low true.

The OPORT is controlled from the CPU by programming the 8-bit control register in the OPORT interface. Refer
to Output Port Controller interface for programming codes and status conditions.

3.3.4 OPORT Controller Interface

The output port controller interface (OPO_INTF) allows the CPU to control and monitor the output port
microsequencer (OPORT). The CPU sets up the OPORT in one of the 8 defined modes and receives OPORT
status information. The OPO_INTF can also drive an interrupt to the CPU system under some OPORT
conditions.

Configuration:
The OPO_INTF is a byte wide port in the 68020 memory map. Its internal architecture consists of one control and
two status registers. Commands are sent to the OPORT controller through the Control Register. The OPORT
defined commands are: Set Mode, OPORT Reset, and Enable PERMIT_IN Interrupt. Register bit definitions are
defined in Table 14. Refer to Figure 2 for the OPORTS base address.

Table 14 OPORT CPU Register Definitions
Address Write Function Read Function

OPORTS+0 None Status register 1
b0-b3: OPORT Status
b4: Control FIFO Status
b5: Permit_In line flag
b6: undefined
b7: undefined

OPORTS+1 Control register
b0-b2: OPORT Mode
b3: OPORT hardware Reset (1=reset)
b4: undefined
b5: undefined
b6: Permit_In_Mask
b7: Suppress Zero Events (SZE)

 Status register 2
b0-b2: OPORT Mode
B3: OPORT hardware Reset
b4: Permit_Out flag
b5 : undefined
b6: Permit_In mask
b7: Suppress Zero Events (SZE)

The software reset has the same effect over the OPORT as the hardware reset. The OPORT goes to the power on
reset state, and the control FIFOS are cleared. The mode lines are cleared during a reset operation until a
command word is written to the OPORT command register.

Note: When the Reset bit is set in the OPORT Control register, the OPORT Controller remains in Reset condition
until the bit is cleared.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 45

The interrupt condition is also reflected in the status registers, along with the OPORT state machine status. A
latched version of the PERMIT_IN signal is available to the processor in OPORT Status Register 1. A read from
this register clears the interrupt flags, and the PERMIN latch.

Table 15 OPORT Status Code Definitions

Status Code Meaning
0 Hold/Idle 10 MHz (no mode set, OPORT is off line)
1 Waiting for Permit In
2 Waiting for End Of Event from FPORT
3 Transmitting Data
4 Waiting (OPORT Wait input is true)
5 Waiting FSCC Data FIFO is empty
6 Output paused by user
7 - 13 reserved
14 Hold/Idle 6.67 MHz (no mode set, OPORT is off line)
15 Hold/Idle 5.0 MHz (no mode set, OPORT is off line)

Control FIFO Status bit
This bit reads as a 0 when the Control FIFO is empty, and as a 1 when the Control FIFO is not empty. Reading
this bit allows the 68020 to see if there are any complete events queued in the FSCC’s data FIFO’s. The Control
FIFO Status bit will be a 1 after an End Of Event instruction has been executed, and before the OPORT starts
outputting the event. This will be true if the PERMIT IN token has not been received, or the OPORT is busy
outputting a previous event.

Permit In Flag
This bit reads as a 1 when the Permit_In Mask bit is set, and after a Permit In pulse is received. The Permit In
Flag latch is cleared by reading OPORT Status Register 1, or resetting the OPORT controller.

OPORT Mode 0-2
These three bits select the OPORT Controller’s operating mode.

OPORT Reset
This high true bit (1=reset) maps directly to the OPORT Controller’s hardware reset pin. Setting this bit high
places the OPORT controller into reset. The bit must be cleared to take the OPORT controller out of reset before a
mode can be set.

Permit_In_Mask
This bit enables the Permit In flag in OPORT Status Register 1, and also the AUXREQ interrupt (GPIP2). If
desired, receipt of a Permit In can generated a processor interrupt, if the Permit_In_Mask bit is set, and GPIP2 is
enabled in the 68901 interrupt controller.

Suppress Zero Events (SZE Bit)
Setting this bit causes the OPORT to suppress output of zero word events. If the Data FIFO contains a Null event
(no data) when an End_Of_Event instruction is executed, the OPORT controller will normally generate a Word
Count/Header word (with the word count value of zero), and output this one word before passing the token. In
some systems, it is desirable to reduce the amount of meaningless data collected, such as an event of word count
zero. PC4b modules are equipped with a feature to allow suppression of the output of these zero word events.
When the SZE bit is set to a one, and an End_Of_Event instruction is executed with an empty Data FIFO, the
OPORT controller detects the zero word event, and passes the token without outputting the zero valued Word
Count/Header word. The SZE feature has no other effect on operation of the OPORT controller, and it works in a
similar manner regardless of output rate setting, or OPORT mode setting. After Reset, the SZE bit’s default state
is zero (SZE disabled).

FSCC Hardware Manual Version PC4b

46 November 1, 1995

3.3.5 OPORT Output Waveforms

1 2 3 4 3 1

STB_AC = Strobe at input to RS-485 driver on FSCC-DARTAC card.

STB_MB = Strobe on Main Board at FASTBUS Auxiliary Connector.

OPORT Mode = Mode 1 (Token_Middle)

FFFE0006 1 2 4 8 10 20

Figure 10 Output Port Token_Middle Analyzer Picture
Figure 10 is a Logic Analyzer snap-shot of a six word event as output through the Output Port (OPORT). The
OPORT is configured in Token_Middle mode in this example. While waiting for the token (PERMIT_IN), the
OPORT controller reports Status = 1 (Waiting for Permit). The Rising edge (the rising edge is the trailing edge,
the falling edge is not shown) of PERMIT_IN causes the OPORT to enable the Strobe RS-485 driver (STB_OE
goes true) and report Status = 2 (Waiting for End_Of_Event from FPORT). Since End_Of_Event has previously
been executed by the FPORT controller, Status = 2 is only transitory as the OPORT controller begins outputting
data. One cycle (50ns) after enabling the Strobe RS-485 driver, the data RS-485 drivers are enabled (DATAOE
goes true), and the OPORT controller issues Status = 3 (Outputting Data). The first word out of the port is the
header, containing the word count, error bit, and header bits. The header is zero, the low true Bad Event bit (bit
17) is high, and the undefined bits 18 through 31 are high in this example. The undefined bits in the Header/Word
Count word are not guaranteed to be in a known state. Data is valid on the falling edge of Strobe. WAIT is driven
true by the receiving module during the third data word. The output is paused during the fourth data word, and
Status = 4 (Waiting due to WAIT true) is issued. Data Strobe goes true for word four after the OPORT controller
sees WAIT go inactive. Status = 3 is again issued. After the last word in the event is output, the data RS-485
drivers are disabled, then the Strobe RS-485 driver is disabled. PERMIT_OUT is output to pass the token to the
next FSCC (or other DART data source) in the token passing chain. Status = 1 is then issued. The EOR RS-485
driver is disabled in Token_Middle Mode.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 47

STB_AC = Strobe at input to RS-485 Driver on FSCC-DARTAC card.

STB_MB = Strobe on Main Board at FASTBUS Auxiliary Connector.

OPORT Mode = Mode 2 (Token_First)

1 2 4 8 10 20 40 80FFFE0008

1 2 3 4 3 1

Figure 11 Output Port Token_First Analyzer Picture
Figure 11 shows a small event being output in Token_First mode. This mode is similar to Token_Middle mode
above, with the exception being that the event is output without waiting for PERMIT_IN the first time after
configuration.

The internal FSCC signal DATCLK is also shown in this figure. DATCLK is the clock signal to the output data
latch. The output data latch is clocked by the rising edge of this signal. The data can be seen changing shortly
after the rising edge of DATCLK.

FSCC Hardware Manual Version PC4b

48 November 1, 1995

1 2 3 4 3 1

STB_AC = Strobe at input to RS-485 driver on FSCC-DARTAC card.

STB_MB = Strobe on Main Board at FASTBUS Auxiliary Connector.

OPORT Mode = Mode 7 (Token_Last)

FFFE0006 1 2 4 8 10 20

Figure 12 Output Port Token_Last Analyzer Picture
Figure 12 shows the Output Port operating in Token_Last mode. In Token_Last mode, the port functions similarly
to Token_Middle mode described above, except that the End_Of_Record (EOR) signal is generated. The EOR
RS-485 driver is also enabled (EOR_OE is true) whenever the OPORT is in Token_Last or Token_Only modes.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 49

FFFE0006 1 2 4 8 10 20

1 2 3 4 3 1

STB_AC = Strobe at input to RS-485 driver on FSCC-DARTAC card.

STB_MB = STrobe on Main Board at FASTBUS Auxiliary Connector.

OPORT Moce = Mode 3 (Token_Only)

Figure 13 Output Port Token_Only Analyzer Picture
In Figure 13 Token_Only mode is shown. This mode is similar to Token_Last mode, except that the OPORT
Controller does not wait for PERMIT_IN before beginning the data transfer. The EOR RS-485 driver is enabled
(EOR_OE is true) and EOR is driven in Token_Only mode.

FSCC Hardware Manual Version PC4b

50 November 1, 1995

STB_AC = Strobe at input to RS-485 driver on FSCC-DARTAC card.

OPORT Mode = Mode 2 (Token_First) (6.67 Mhz output rate)

STB_MB = Strobe on Main Board at FASTBUS Auxiliary Connector.

FFFE0006 1 2 4 8 10 12

E 1 2 3 4 3

Figure 14 Output Port 6.67 MHz Analyzer Picture
Figure 14 shows the OPORT in Token_First mode after having previously been configured to output data at a 6.67
MHz rate (150ns per 32-bit word). Wherever the status reported to the processor would have been zero if
configured to output at a 10MHz rate, it is hex E (decimal 14) in 6.67 MHz mode.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 51

FFFE0004 1 2 4 8

F 1 2 3 4 3

STB_AC = Strobe at input to RS-485 driver on FSCC-DARTAC card.
STB_MB = Strobe at Main Board FASTBUS Auxiliary Connector.

OPORT Mode = Mode 2 (Token_First) (5Mhz output rate)

Figure 15 Output Port 5.0 MHz Analyzer Picture
Figure 15 shows the OPORT in Token_First mode after having previously been configured to output data at a 5.0
MHz rate (200ns per 32-bit word). Wherever the status reported to the processor would have been zero if
configured to output at a 10 MHz rate, it is hex F (decimal 15) in 5.0 MHz mode.

3.3.6 OPORT Auxiliary Parallel Port
PC4b FSCC’s have seven TTL lines connecting the personality card to the processor, in addition to the five control
lines which connect directly to the OPORT Controller. The seven lines are connected to the 68020 via an EPLD.
Currently this device is programmed to drive these seven lines as parallel outputs from an eight bit parallel port
(see PARLLS in Figure 2). Note that currently available personality cards do not use the OPORT Aux. lines.
Table 16 shows the bit definitions for the OPORT AUX. port. Pin assignments for the OPORT AUX. lines are
shown in Table 4.

Table 16 OPORT Auxiliary Parallel Port Bit Definitions
Address Write Function Read Function

PARLLS+0 OPORT Aux. Output Latch
b0-b3: OPORT Aux. bits 0 - 3
b4: reserved
b5-b7: OPORT Aux. bits 5 - 7

OPORT Aux. Input Register
b0-b3: OPORT Aux. bits 0 - 3
b4: reserved
b5-b7: OPORT Aux. bits 5 - 7

FSCC Hardware Manual Version PC4b

52 November 1, 1995

3.3.7 Header and Event Counter Control System (H&C Controller)

3.3.7.1 Header and Counter (H&C)

D0/D8

D9/D16

CFIFOWRITE

EOE

FCLK

C
F

IF
O

 #
0

C
F

IF
O

 #
1

6 8 0 2 0 DB 1 6 -3 1

H&C
CONTROLLER

EMPTY FLAG

H_CSEL*

R/W*

AD1

CFIFORESET

OUTPUT PORT DAT

CFIFO READ

(Global Word
Counter &
Header Latch)

TRIGGER_ID 0-3

Figure 16 Header And Counter Block Diagram

The H&C system keeps a crate wide total count of 32-bit data words written into the Data FIFO. This “Global
Word Counter” (GWC) includes data read from FASTBUS, and data written directly into the Data FIFO by the
processor. The header is a 5-bit word which is either loaded by the processor, or loaded directly by the Trigger
Input port into the Header Field. The 12 bit word counter is incremented by one, for each word transferred into the
Data FIFO via a clock signal (FCLK) coming from the FASTBUS controller. When an End Of Event instruction
is executed by the FPORT controller, the 5 header bits, the 12 counter bits, and the Bad Event bit (0=bad,1=OK),
are packed into one 32-bit word and pushed into the Control FIFO. The Counter is then automatically reset to be
ready for the next event. This H&C word then becomes the first word in the next data block to be transmitted out
of the OPORT. The separate Control and Data FIFO’s are necessary, since the FSCC does not know how many
data words there are, until it is finished counting them as it reads them out of the front-end modules. Even though
the H&C word is the last piece of data in a data block to be generated, it must go to the head of the line, to be
output first. Therefore, the H&C word cannot go into the Data FIFO since it would then be after the data, and it
would be output last. With the separate Control FIFO, the H&C word can be pulled out of the Control FIFO and
output first, then the data can be clocked out of the Data FIFO to be output next.

0111216171831

Undefined

Bad Event Bit

Header Global Word Count

Global Word Count and Header Word (H&C Word)

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 53

PC4b boards are equipped with a feature which allows the Trigger ID from the Front Panel Trigger Input port to be
written automatically into the four least significant bits of the Header field. This feature eliminates the need for
the 68020 to read the Trigger ID out of the Trigger port, and then write the value into the Header register. The
default configuration for the Header, is that the 5 Header Register bits are written into header field of the header
word upon execution of an End Of Event instruction. If the ETH (Enable Trigger in Header) bit is set in the H&C
Control register, the Trigger ID bits clocked into the Front Panel Trigger port by the Trigger Strobe are written
into low four bits of the header field.

0

1

2 3

4 5

Idle
Counter
Enable

Else

If S=01
Else

Elseif S=10

If S=10 & !EOE
If EOE

Counter
Clear

Else

Else

Counter
Load

If S=01

Elseif S=11

Else

If S=00

If LDS & UDS
& !A1 & !READ

If LDS & UDS

Else

Trans-
parent

CFIFO
Write

If S<>10

Figure 17 Header and Counter State Machine Diagram

3.3.7.2 System Interface
The entire Header, Global Word Counter and H&C control state machine is implemented in one EPM5128. The
CPU sees the H&C system as a 16/8 bit peripheral. Four registers can be accessed from the processor bus. The
counter and other H&C registers are accessible in bytes or words. The internal registers are selected by the 68020
through select and control lines: H&CSEL*, R/W*, UDS*, LDS* and A1. Table 17 gives a register select truth
table for the H&C Controller.

Table 17 Header and Counter Control Signal Truth Table

A1 UDS LDS R/W Reg. Selected
0 0 0 X 12 bit counter
0 0 1 X Lower 8 bits of the Counter
0 1 0 X Upper 4 bits of the counter
1 0 1 X Header
1 1 0 0 Command
1 1 0 1 Status

FSCC Hardware Manual Version PC4b

54 November 1, 1995

The interface between the H&C controller and the FASTBUS (FPORT) sequencer is through FCLK (counter
clock) and CEOE (Control End of Event) lines. Both are asynchronous to the 20 MHz clock of the state machine.
FCLK increments H&C counter when it is in Increment mode. CEOE indicates that counting is over and the H&C
value should be transferred to the CFIFO. The GWC is then reset to zero.

3.3.7.3 H&C Register Definitions
The H&CSEL base address is listed in Figure 2. Table 18 lists the register definitions for the H&C Controller.
The GWC preload register is provided, but under normal use, preloading of the GWC is not necessary. The GWC
is reset whenever and End_Of_Event instruction is executed.

Table 18 Header and Counter Register Map
Address Write Function Read Function

H&CSEL+0
(16-bit)

 GWC Preload register
b0-b11: Preload count
b12-b15: Undefined

 GWC Register
b0-b11: Counter contents
b12-b15: Undefined

H&CSEL+2
(8-bit)

 Header register
b0-b4: H0-4 Header preload
b5-b7: Undefined

 Header register
b0-b4: H0-4 Header contents
b5-b7: Undefined

H&CSEL+3
(8-bit)

 Control register
b0-b1: S0,S1 Command select field
b2: H&C RESET
b3-b6: Undefined
b7: ETH control bit

 Status register
b0-b1: S0,S1 Command select field
b2: Undefined
b3-b6: Q0-Q3 H&C state status
b7: ETH control bit

3.3.7.3.1 GWC Preload Register / GWC Register
A Write to this register loads the GWC Preload register. The lower 12 bits of the GWC Preload Register are
transferred into the GWC when the Preload command is written into the H&C Control Register. Reading this
register provides the current contents of the GWC.

3.3.7.3.2 Header Register
Bits 12-16 of the H&C Word contain the Event Header Field. These five bits are provided to allow identification
tags to be attached to individual events. The Header Field (as well as the GWC field) of the H&C word is written
into the CFIFO when an End_Of_Event instruction is executed by the FPORT. There are two modes of operation
for the Header. In the default mode, the Header Field is filled by the value written into the Header Register by the
CPU. The contents of this register may be changed at any time, but the user must be careful to know which
event’s ID tag is being attached to which event (the value in the Header Register when an End Of Event instruction
is executed will be the tag attached to the event). In ETH (Enable Trigger ID in Header) mode, the contents of the
lower four bits of the Header Field are filled by the value clocked into the Front Panel Trigger Input Port by the
Trigger Strobe. These values are clocked into the Trigger Input FIFO. The FPORT clocks the Trigger values out
of the Trigger FIFO with each End Of Event Instruction, so the Trigger Values automatically stay in sync with the
event data in the Data FIFO. The Trigger Input value present when the Trigger Strobe is clocked is attached to the
event read out for that Trigger. In this mode, bit five of the Header Field is filled by bit five of the Header
Register.

FSCC Hardware Manual Version PC4b

Novmber 1, 1995 55

3.3.7.3.3 Control Register

Bits b0 and b1 are the H&C Mode select bits S0 and S1. Mode definitions are described in Table 19.

Table 19 Header and Counter Mode Definitions

Control Mode S1,S0 Function
HOLD: 00b Global Word Counter does not increment.
INCRM: 10b Global Word Counter increments one count for each data word written
into the Data FIFO. Upon execution of an End Of Event instruction by the FPORT, the GWC (bits 0-11) is
combined with the Header (bits 12-16) and the Bad Event Bit (bit 17), and pushed into the Control FIFO.
The GWC is then cleared.
PRELOAD: 01b When set to preload mode, data in the GWC Preload register is
transferred to the Global Word Counter.
TRANSPARENT: 11b Data written to the GWC Preload Register is written directly into the
Control FIFO.

H&C RESET
This high true bit places the H&C into reset state when set. The Command bits are cleared (placed into Hold
mode), the ETH bit is cleared, the GWC Preload Register is set to zero, and the GWC is set to zero. The H&C
RESET bit must be cleared to take the H&C out of reset state.

ETH (Enable Trigger ID in Header) Control Bit
When set to a one, the Trigger ID value in the Trigger FIFO will be written directly into the low four bits of the
Header field of the Header and Counter word when an End Of Event instruction is executed. This eliminates the
need for the processor to read the Trigger ID port and then write this value into the Header register so that the
Trigger ID may attached to the data block. The End Of Event instruction also clocks the Trigger FIFO so that the
next trigger ID value will be ready when the next End Of Event instruction is executed. When the ETH bit is set to
a zero, the 5-bit value in the Header Register (written by the processor) will be transferred into the Header and
Counter word. Since the Trigger ID is 4 bits wide, and the Header field is 5 bits wide, only the four lower bits of
the Header field are written by the Trigger ID. The fifth bit (Header bit 4) is always written by bit 4 of the Header
Register. The default value of the ETH Control bit is zero.

3.3.7.3.4 Status Register
S1,S0
Command Select bits.

H&C state status
These bits reflect the current state number of the H&C Controller’s state machine shown in Figure 17. They are
provided mostly for diagnostic purposes.

ETH (Enable Trigger ID in Header) Control Bit
The state of the ETH control bit is reflected.

3.3.8 OPORT Auxiliary Connector Interface

All levels at the output port are single ended TTL. Level adapters to different protocols will be mounted on the
FASTBUS auxiliary card. The data path is 32 bits wide. Two control lines are provided to regulate data flow:

WAIT pauses the OPORT
STROBE is a synchronous data strobe

The OPORT generates the pipeline latch clock, the output data strobe, and the output latch tri-state enable. Timing
diagrams are shown in Figure 10 through Figure 15.

FSCC Hardware Manual Version PC4b

56 November 1, 1995

3.4 Communication Protocols

The following control line assignments apply to the RS-485 FSCC-DARTAC interface;

FBAUX pin B60 AC12 Strobe RS-485 driver Output Enable
FBAUX pin B59 AC11 32-bit Data driver Output Enable
FBAUX pin B58 AC10 WAIT* input
FBAUX pin B15 AC09 End Of Record
FBAUX pin B14 AC08 STROBE* output

FBAUX pin B4 AC00 not used (OPORT Aux. parallel port bit 0)
FBAUX pin B5 AC01 not used (OPORT Aux. parallel port bit 1)
FBAUX pin B6 AC02 not used (OPORT Aux. parallel port bit 2)
FBAUX pin B7 AC03 not used (OPORT Aux. parallel port bit 3)
FBAUX pin B8 AC04 End Of Record driver Output Enable
FBAUX pin B11 AC05 not used (OPORT Aux. parallel port bit 5)
FBAUX pin B12 AC06 not used (OPORT Aux. parallel port bit 6)
FBAUX pin B13 AC07 not used (OPORT Aux. parallel port bit 7)

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 57

4. Appendix A - FPORT Controller Instruction Set

Appendix A - FPORT Controller Normal Mode Instruction Set

58 November 1, 1995

4.1 FPORT Controller Normal Mode Instruction Set
4.1.1 BUS_ARBITRATE

BUS_ARBITRATE SLOWBASE+$300

Description: Arbitrate for FASTBUS using the low byte of the data operand. Bits 0-5 supply the arbitration
vector. Bit 7 enables assured access mode. Bit 6 (prioritized access mode) is ignored.
Note that the data operand is a long word and is normally identical to the value of
CSR 8.

Example Syntax: MOVE.L CSR_8, BUS_ARBITRATE

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) {goto INTS;}

elseif IGK(FRDY) return processor acknowledge A; FDSACK*⇓
else {request bus; FREQ⇑ goto C4;}

C5: return sequencer status;
return processor acknowledge B; FDSACK*⇓

C6: Delay Cycle; /*FPORT deselect*/
C7: Delay Cycle;
C8: Delay Cycle;

Note: In a multi-master system, the processor should examine the parallel port FSLV*, FRDY and FRAK inputs
to confirm that the FSCC has either acquired the bus or been addressed as a slave
while attempting to acquire the bus. 0

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 59

4.1.2 BUS_RELEASE

BUS_RELEASE FASTBASE+$004

Description: Release FASTBUS arbitration lock.

Example Syntax: MOVE.L DUMMY, BUS_RELEASE

Operation: C1: FPORT select;
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: {DS=0; FCDS⇑

DK=0; FCDK⇑
AS=0; FCAS⇑
release bus;} FREL⇑

C5: return sequencer status;
C6: Delay Cycle; /*FPORT deselect*/
C7: Delay Cycle;
C8: Delay Cycle;

Appendix A - FPORT Controller Normal Mode Instruction Set

60 November 1, 1995

4.1.3 ADDRESS_DATA_GEOGRAPHICAL

ADDRESS_DATA_GEOGRAPHICAL FASTBASE+$304

Description: Perform a FASTBUS geographical primary address cycle to DATA Space.

Example Syntax: MOVE.L FB_ADDR, ADDRESS_DATA_GEOGRAPHICAL

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0;
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
MS=0;
EG=1; FDEG⇑
enable short timer;
goto C4;} TIMER⇑

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 61

4.1.4 ADDRESS_CSR_GEOGRAPHICAL

ADDRESS_CSR_GEOGRAPHICAL FASTBASE+$308

Description: Perform a FASTBUS geographical primary address cycle to CSR Space.

Example Syntax: MOVE.L FB_ADDR,ADDRESS_CSR_GEOGRAPHICAL

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0; FDMS0⇓
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
MS=1; FDMS0⇑
EG=1; FDEG⇑
enable short timer; TIMER⇑
goto C4;}

Appendix A - FPORT Controller Normal Mode Instruction Set

62 November 1, 1995

4.1.5 ADDRESS_DATA_LOGICAL

ADDRESS_DATA_LOGICAL FASTBASE+$30C

Description: Perform a FASTBUS logical primary address cycle to DATA Space.

Example Syntax: MOVE.L FB_ADDR,ADDRESS_DATA_LOGICAL

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0;
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
enable short timer; TIMER⇑
goto C4;}

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 63

4.1.6 ADDRESS_CSR_LOGICAL

ADDRESS_CSR_LOGICAL FASTBASE+$310

Description: Perform a FASTBUS logical primary address cycle to CSR Space.

Example Syntax: MOVE.L FB_ADDR,ADDRESS_CSR_LOGICAL

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0; FDMS0⇓
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
MS=1; FDMS0⇑
enable short timer; TIMER⇑
goto C4;}

Appendix A - FPORT Controller Normal Mode Instruction Set

64 November 1, 1995

4.1.7 ADDRESS_DATA_BROADCAST

ADDRESS_DATA_BROADCAST FASTBASE+$314

Description: Perform a FASTBUS broadcast primary address cycle to DATA Space.

Example Syntax: MOVE.L FB_ADDR,ADDRESS_DATA_BROADCAST

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0; FDMS1⇓
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
MS=2; FDMS1⇑
enable short timer;} TIMER⇑

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 65

4.1.8 ADDRESS_CSR_BROADCAST

ADDRESS_CSR_BROADCAST FASTBASE+$318

Description: Perform a FASTBUS geographical primary address cycle to CSR Space.

Example Syntax: MOVE.L FB_ADDR,ADDRESS_CSR_BROADCAST

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0; FDMS0⇓, FDMS1⇓
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
MS=3; FDMS0⇑, FDMS1⇑
enable short timer; TIMER⇑
goto C4;}

Appendix A - FPORT Controller Normal Mode Instruction Set

66 November 1, 1995

4.1.9 ADDRESS_RELEASE

ADDRESS_RELEASE FASTBASE+$31C

Description: Release address lock.

Example Syntax: MOVE.L DUMMY,ADDRESS_RELEASE

Operation: C1: FPORT select;
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

else {DS=0; FCDS⇑
DK=0; FCDK⇑
MS=0; FDMS0⇓, FDMS1⇓,FDMS2⇓
AS=0; FSAS⇑
enable short timer;} TIMER⇑

C5: if IRQ(SEQINT) goto INTF;
elseif AK(FRAK) goto C5;
else return sequencer status;

exit;

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 67

4.1.10 DATA_PROCESSOR_RANDOM_READ

DATA_PROCESSOR_RANDOM_READ SLOWBASE+$320

Description: Perform a FASTBUS single word read data cycle.

Example Syntax: MOVE.L DATA_PROCESSOR_RANDOM_READ,DATA

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTS;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif DK(FRDK) return processor acknowledge A; FDSACK*⇓
else {enable short timer; TIMER⇑

RD=1; FDRD⇑
MS=0;
DS=1; FSDS⇑
goto C4;}

C5: reset short timer; TIMER⇓
return processor acknowledge B; FDSACK*⇓

C6: if IRQ(SEQINT) INTF;
elseif WT(FRWT) {reset short timer; TIMER⇓

goto C6;}
elseif !DK(FRDK*) {return sequencer status;

reset short timer; TIMER⇓}
else {enable short timer; TIMER⇑

RD=0; FDRD⇓
MS=0;
DS=0; FCDS⇑
goto C6;}

C7: delay cycle; /* processor deselect */
C8: delay cycle;
C9: delay cycle;

Appendix A - FPORT Controller Normal Mode Instruction Set

68 November 1, 1995

4.1.11 DATA_PROCESSOR_RANDOM_WRITE

DATA_PROCESSOR_RANDOM_WRITE FASTBASE+$324

Description: Perform a FASTBUS single word write data cycle.

Example Syntax: MOVE.L DATA,DATA_PROCESSOR_RANDOM_WRITE

Operation: C1: FPORT select;
latch DATA; DCPBA⇑
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif DK(FRDK) reset short timer; TIMER⇓
else {enable short timer; TIMER⇑

RD=0;
MS=0;
DS=1; FSDS⇑
goto C4;}

C5: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMER⇓

goto C5;}
elseif !DK(FRDK*) {return sequencer status;

exit;}
else {enable short timer; TIMER⇑

RD=0;
MS=0;
DS=0; FCDS⇑
goto C5;}

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 69

4.1.12 DATA_PROCESSOR_SEC_ADDRESS_READ

DATA_PROCESSOR_SEC_ADDRESS_READ SLOWBASE+$328

Description: Perform a FASTBUS secondary address read cycle.

Example Syntax: MOVE.L DATA_PROCESSOR_SEC_ADDRESS_READ,SADDR

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTS;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif DK(FRDK) return processor acknowledge A; FDSACK*⇓
else {enable short timer; TIMER⇑

RD=1; FDRD⇑
MS=2; FDMS1⇑
DS=1; FSDS⇑
goto C4;}

C5: reset short timer; TIMER⇓
return processor acknowledge B; FDSACK*⇓

C6: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMER⇓

goto C6;}
elseif !DK(FRDK*) {reset short timer; TIMER⇓

return sequencer status;}
else {enable short timer; TIMER⇑

RD=0; FDRD⇓
MS=2; FDMS1⇑
DS=0; FCDS⇑
goto C6;}

C7: delay cycle; /* processor deselect */
C8: delay cycle;
C9: delay cycle;

Appendix A - FPORT Controller Normal Mode Instruction Set

70 November 1, 1995

4.1.13 DATA_PROCESSOR_SEC_ADDRESS_WRITE

DATA_PROCESSOR_SEC_ADDRESS_WRITE FASTBASE+$32C

Description: Perform a FASTBUS secondary address write cycle.

Example Syntax: MOVE.L SADDR,DATA_PROCESSOR_SEC_ADDRESS_WRITE

Operation: C1: FPORT select;
latch SADDR; DCPBA⇑
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif DK(FRDK) reset short timer; TIMER⇓
else {enable short timer; TIMER⇑

RD=0;
MS=2; FDMS1⇑
DS=1; FSDS⇑
goto C4;}

C5: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMER⇓

goto C5;}
elseif !DK(FRDK*) {return sequencer status;

exit;}
else {enable short timer; TIMER⇑

RD=0;
MS=0; FDMS1⇓
DS=0; FCDS⇑
goto C5;}

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 71

4.1.14 DATA_PROCESSOR_BLOCK_TRANSFER_READ

DATA_PROCESSOR_BLOCK_TRANSFER_READ
SLOWBASE+$008

Description: Input one word of a FASTBUS block transfer read cycle. Processor Block transfer reads occur by
executing one DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction for
each data word to be input. The FASTBUS sequencer maintains the proper state of
DS after completion of the instruction. The
DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE instruction must then
be used to “clean-up” after a string of
DATA_PROCESSOR_BLOCK_TRANSFER_READ instructions have been
executed. Note that the state of the MS and RD lines are set to zero after each
DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction is executed. This is
allowed by the FASTBUS specification, however, some slaves are confused by this
behavior. Since the DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction
effectively leaves the state of the Sequencer, and of the attatched slave in the middle
of a block transfer operation, care should be taken to ensure that a
DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction always follows
any group of DATA_PROCESSOR_BLOCK_TRANSFER_READ instructions.

Example Syntax: MOVE.L DATA_PROCESSOR_BLOCK_TRANSFER_READ,DATA

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTS;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif ! DS(FRDS*) {enable short timer; TIMER⇑
RD=1; FDRD⇑
MS=1; FDMS1⇑
DS=1; FSDS⇑
goto C6;}

else {enable short timer; TIMER⇑
RD=1; FDRD⇑
MS=1; FDMS0⇑
DS=0;} FCDS⇑

C5: if IRQ(SEQINT) goto INTS;
elseif ! DK(FRDK*) {return processor acknowledge A; FDSACK*⇓

reset short timer; TIMER⇓
goto C7;}

else goto C5;
C6: if IRQ(SEQINT) goto INTS;

elseif DK(FRDK) {return processor acknowledge A; FDSACK*⇓
reset short timer;} TIMER⇓

Appendix A - FPORT Controller Normal Mode Instruction Set

72 November 1, 1995

else goto C6;
C7: {return processor acknowledge B; FDSACK*⇓

return sequencer status;}
C8: delay cycle; /* processor deselect */
C9: delay cycle;
C10: delay cycle;
C11: delay cycle;

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 73

4.1.15 DATA_PROCESSOR_BLOCK_TRANSFER_WRITE

DATA_PROCESSOR_BLOCK_TRANSFER_WRITE
FASTBASE+$00C

Description: Output one word of a FASTBUS block transfer write cycle. Since the FSCC has been optimized as
a read-out controller, there is no FIFO to queue data to be output through the
FASTBUS port. Block transfer writes occur by executing one
DATA_PROCESSOR_BLOCK_TRANSFER_WRITE instruction for each data word
to be output. The FASTBUS sequencer maintains the proper state of DS after
completion of the instruction. The
DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE instruction must then
be used to “clean-up” after a string of
DATA_PROCESSOR_BLOCK_TRANSFER_WRITE instructions have been
executed. Note that the state of the MS lines are set to zero after each
DATA_PROCESSOR_BLOCK_TRANSFER_WRITE instruction is executed. This
is allowed by the FASTBUS specification, however, some slaves are confused by this
behavior. Since the DATA_PROCESSOR_BLOCK_TRANSFER_WRITE
instruction effectively leaves the state of the Sequencer, and of the attatched slave in
the middle of a block transfer operation, care should be taken to ensure that a
DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE instruction always
follows any group of DATA_PROCESSOR_BLOCK_TRANSFER_WRITE
instructions.

Example Syntax: MOVE.L DATA,DATA_PROCESSOR_BLOCK_TRANSFER_WRITE

Operation: C1: FPORT select;
latch DATA; DCPBA⇑
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
RD=0;
MS=1; FDMS0⇑
goto C4;}

elseif ! DS(FRDS*) {enable short timer; TIMER⇑
RD=0;
MS=1; FDMS0⇑
DS=1; FSDS⇑
goto C6;}

else {enable short timer; TIMER⇑
RD=0;
MS=1; FDMS0⇑
DS=0;} FCDS⇑

C5: if IRQ(SEQINT) goto INTF;
elseif ! DK(FRDK*) {reset short timer; TIMER⇓

RD=0;

Appendix A - FPORT Controller Normal Mode Instruction Set

74 November 1, 1995

MS=0; FDMS0⇓
return sequencer status;
exit;}

else goto C5;
C6: if (IRQ) goto INTF;

elseif (DK) {reset short timer; TIMER⇓
RD=0;
MS=0; FDMS0⇓
exit;}

else goto C6;

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 75

4.1.16 DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE

DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE
FASTBASE+$330

Description: Perform termination step of a FASTBUS block transfer read or write operation. This instruction
allows the state of DS to be set low after executing one or more
DATA_PROCESSOR_BLOCK_TRANSFER_WRITE or
DATA_PROCESSOR_BLOCK_TRANSFER_READ instructions. It should always
be executed after a group of either of these two instructions have been executed.

Example Syntax: MOVE.L DUMMY,DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE

Operation: C1: FPORT select;
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C4;
elseif !FRDK {return sequencer status; goto C5;}
else {MS=0; FDMS0⇓, FDMS1⇓, FDMS2⇓

RD=0; FDRD⇓
DS=0;} FCDS⇑

C5: delay cycle;
C6: delay cycle;
C7: delay cycle;

Appendix A - FPORT Controller Normal Mode Instruction Set

76 November 1, 1995

4.1.17 DATA_FIFO_BLOCK_TRANSFER_READ

DATA_FIFO_BLOCK_TRANSFER_READ FASTBASE+$334

Description: Perform a FASTBUS block transfer read to the Data FIFO. The block transfer is terminated upon
receipt of SS=2 from the slave, or if the number of words specified in the Local
Counter have been read (if enabled).

Example Syntax: MOVE.L DUMMY,DATA_FIFO_BLOCK_TRANSFER_READ

Operation: C1: FPORT select;
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
enable FIFO; DFIFOEN⇑,PFIFOEN⇑
RD=1; FDRD⇑
MS=1; FDMS0⇑
goto C4;}

else {enable FIFO; DFIFOEN⇑,PFIFOEN⇑
RD=1; FDRD⇑
MS=1; FDMS0⇑
DS=1; FSDS⇑
local counter mode = decrement; LC0⇑, LC1⇑}

C5: {local counter mode = hold; LC0⇓, LC1⇓
enable short timer;} TIMER⇑

C6: continue; /* delay cycle */
C7: if ((FRDK*FRSS1)#SEQINT #FEOB) goto C11;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C7;}

elseif DK(FRDK) {DS=0; FCDS⇑
local counter mode = decrement; LC0⇑, LC1⇑
reset short timer; TIMER⇓
clock global word counter; FCLK⇑}

else {enable short timer; TIMER⇑
goto C7;}

C8: {local counter mode = hold; LC0⇓, LC1⇓ /* delay cycle */
enable short timer; TIMER⇑}

C9: delay cycle;
C10: if ((!FRDK*FRSS1)#SEQINT#FEOB) goto C11;

elseif WT(FRWT) {reset short timer;
goto C10;}

elseif !DK(!FRDK) {DS=1; FSDS⇑
local counter mode=decrement; LC0⇑, LC1⇑
reset short timer; TIMER⇓
clock global word counter; FCLK⇑

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 77

goto C5;}
else goto C10;

C11: if SS2(FRSS1) clock global word counter; FCLK⇑
/* block transfer termination */
C12: if IRQ(SEQINT) goto INTF;

 elseifDS(FRDS) continue;
 else goto C22;

/* termination routine for odd word count transfer */
/* check that DK is high */
/* set DS low and wait for DK low */
/* data written to FIFO on DK down is dummy word with EOE flag*/
C13:if IRQ(SEQINT) goto INTF;

elseif DK(FRDK) {reset short timer; TIMER⇓
MS=0;} FDMS0⇓

else {enable short timer; TIMER⇑
goto C13;}

C14:continue; /* delay cycle */
C15:continue; /* delay cycle */
C16:continue; /* delay cycle */
C17:if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C17;}

else {enable short timer; TIMER⇑
DS=0;} FCDS⇑

C18:if IRQ(SEQINT) goto INTF;
elseif ! DK(! FRDK) {RD=0; FDRD⇓

reset short timer; TIMER⇓
return sequencer status}

else {enable short timer; TIMER⇑
goto C18;}

C19:continue; /* delay cycle */
C20:continue; /* delay cycle */
C21:exit;
/* termination routine for even word count transfer */
C22:if IRQ(SEQINT) goto INTF; /* check that DK is low */

elseif ! DK(! FRDK) {RD=0; FDRD⇓
reset short timer; TIMER⇓
return sequencer status}

else {enable short timer; TIMER⇑
goto C22;}

C23:continue; /* delay cycle */
C24:continue; /* delay cycle */
C25:continue; /* delay cycle */
C25:exit;

Appendix A - FPORT Controller Normal Mode Instruction Set

78 November 1, 1995

4.1.18 DATA_FIFO_PIPELINED_READ_100

DATA_FIFO_PIPELINED_READ_100 FASTBASE+$338

Description: Perform a FASTBUS pipelined read to the Data FIFO at 100 nsec/word. This instruction functions
similarly to the DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction
except that it follows the FASTBUS specification for Pipelined operations. Note that
the FSCC does not implement a DK counter as called for in the FASTBUS
specification.

Example Syntax: MOVE.L DUMMY,DATA_FIFO_PIPELINED_READ_100

Operation: C1: FPORT select;
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C4;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {enable FIFO; PFFEN⇑, DFFEN⇑

RD=1; FDRD⇑
MS=3; FDMS0⇑,FDMS1⇑
DS=1; FSDS⇑
local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C5: local counter mode = hold; LC0⇓,LC1⇓
C6: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C6;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {DS=0; FCDS⇑

local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C7: {local counter mode = hold; LC0⇓,LC1⇓
goto C4;}

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 79

4.1.19 DATA_FIFO_PIPELINED_READ_200

DATA_FIFO_PIPELINED_READ_200 FASTBASE+$33C

Description: Perform a FASTBUS pipelined read to the Data FIFO at 200 nsec/word. This instruction functions
similarly to the DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction
except that it follows the FASTBUS specification for Pipelined operations. Note that
the FSCC does not implement a DK counter as called for in the FASTBUS
specification.

Example Syntax: MOVE.L DUMMY,DATA_FIFO_PIPELINED_READ_200

Operation: C1: FPORT select;
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C4;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {enable FIFO; PFFEN⇑, DFFEN⇑

RD=1; FDRD⇑
MS=3; FDMS0⇑,FDMS1⇑
DS=1; FSDS⇑
local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C5: local counter mode = hold; LC0⇓,LC1⇓
C6: continue; /* delay cycle */
C7: continue; /* delay cycle */
C8: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto PIPELINE_TERMINATE;
elseif EOB(FEOB) goto C12;
else {DS=0; FCDS⇑

local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C9: local counter mode = hold; LC0⇓,LC1⇓
C10:continue; /* delay cycle */
C11:goto C4; /* delay cycle */

Appendix A - FPORT Controller Normal Mode Instruction Set

80 November 1, 1995

4.1.20 DATA_FIFO_PIPELINED_READ_400

DATA_FIFO_PIPELINED_READ_400 FASTBASE+$340

Description: Perform a FASTBUS pipelined read to the Data FIFO at 400 nsec/word. This instruction functions
similarly to the DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction
except that it follows the FASTBUS specification for Pipelined operations. Note that
the FSCC does not implement a DK counter as called for in the FASTBUS
specification.

Example Syntax: MOVE.L DUMMY,DATA_FIFO_PIPELINED_READ_400

Operation: C1: FPORT select;
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C4;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {enable FIFO; PFFEN⇑, DFFEN⇑

RD=1; FDRD⇑
MS=3; FDMS0⇑,FDMS1⇑
DS=1; FSDS⇑
local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C5: local counter mode = hold; LC0⇓,LC1⇓
C6: continue; /* delay cycle */
C7: continue; /* delay cycle */
C8: continue; /* delay cycle */
C9: continue; /* delay cycle */
C10:continue; /* delay cycle */
C11:continue; /* delay cycle */
C12:if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C12;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {DS=0; FCDS⇑

local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C13:local counter mode = hold; LC0⇓,LC1⇓
C14:continue; /* delay cycle */
C15:continue; /* delay cycle */
C16:continue; /* delay cycle */
C17:continue; /* delay cycle */
C18:continue; /* delay cycle */
C19:goto C4; /* delay cycle */

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 81

4.1.21 SEQUENCER_NULL

SEQUENCER_NULL FASTBASE+$020

Description: Access the FPORT Controller without performing any operation. Confirms that the FPORT
Controller is active. If the FPORT Controller is stalled, SEQUENCER_NULL will
cause a Processor BUS ERROR interrupt.

Example Syntax: MOVE.L DUMMY,SEQUENCER_NULL

Operation: C1: FPORT select;
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: {return sequencer status;

exit;}

Note: If FASTBUS WT is asserted, the FPORT Controller will wait indefinitely for a slave response. A WT time-
out will only be generated (after the long time-out period) if the processor attempts
another FASTBUS instruction while the first operation is pending. In cases where
the processor does not access the FPORT Controller for extended periods of time
(e.g., a standalone microcode readout loop) an occasional SEQUENCER)NULL
instruction will detect a FASTBUS lockup condition. SEQUENCER_NULL will
also guarantee that all pending FASTBUS operations have been completed by
clearing the instruction pipeline.

Appendix A - FPORT Controller Normal Mode Instruction Set

82 November 1, 1995

4.1.22 LOCAL_COUNTER_LOAD

LOCAL_COUNTER_LOAD SLOWBASE+$010

Description: Initialize Local Word Counter for block transfer.

Example Syntax: MOVE.L COUNT,LOCAL_COUNTER_LOAD

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {return processor acknowledge A; FDSACK*⇓

local counter mode = load;} LC1⇑
C5: {return processor acknowledge B; FDSACK*⇓

local counter mode = hold;} LC1⇓
C6: return sequencer status; /* processor deselect */
C7: delay cycle;
C8: delay cycle

Note: The counter is loaded from the low order 12 bits of COUNT.

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 83

4.1.23 LOCAL_COUNTER_READ

LOCAL_COUNTER_READ SLOWBASE+$014

Description: Read current value of Local Word Counter.

Example Syntax: MOVE.L LOCAL_COUNTER_READ,COUNT

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {return processor acknowledge A; FDSACK*⇓

local counter mode = read;} SLCOE⇑
C5: return processor acknowledge B; FDSACK*⇓
C6: return sequencer status; /* processor deselect */
C7: delay cycle;
C8: delay cycle;

Note: The counter is returned in the low order 12 bits of COUNT.

Appendix A - FPORT Controller Normal Mode Instruction Set

84 November 1, 1995

4.1.24 FIFO_WRITE

FIFO_WRITE SLOWBASE+$018

Description: Write a single word from the processor to the Data FIFO.

Example Syntax: MOVE.L DATA,FIFO_WRITE

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {return processor acknowledge A; FDSACK*⇓

clock FIFO input;} SDW⇑
C5: {return processor acknowledge B; FDSACK*⇓

clock global word counter;} FCLK⇑
C6: return sequencer status; /* processor deselect */
C7: delay cycle;
C8: delay cycle;

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 85

4.1.25 END_OF_EVENT

END_OF_EVENT FASTBASE+$024

Description: Write dummy word to the data FIFO with the End-Of-Event bit set, and send Control EOE to
OPORT to start output.

Example Syntax: MOVE.L DUMMY,END_OF_EVENT

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: set EOE flag to data FIFO; DEOE⇑

set FIFO data write; SDW⇑
C5: negate FIFO data write;
C6: set FIFO data write; SDW⇑;
C7: negate FIFO data write

negate EOE flag to data FIFO
set EOE flag to Output Port; CEOE⇑;

C8: hold EOE flag to Output Port true
return sequencer status;

Appendix A - FPORT Controller Normal Mode Instruction Set

86 November 1, 1995

4.1.26 END_OF_EVENT_REXMIT

END_OF_EVENT_REXMIT FASTBASE+$02C

Description: Send Control EOE to OPORT to start output. Does not insert the Data EOE flag into the Data
FIFO. Use End_Of_Event_Rexmit when using the Retransmit feature of the Data
FIFO to repeat an event transfer out of the Output Port. Use End_Of_Event when the
data in the Data FIFO has not been output before.

Example Syntax: MOVE.L DUMMY,END_OF_EVENT_REXMIT

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {set EOE flag to output controller; CEOE⇑}
C5: return sequencer status;

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 87

4.1.27 SLAVE_DATA_INPUT

SLAVE_DATA_INPUT SLOWBASE+$01C

Description: Transfer one data word from FASTBUS to the processor in slave mode.

Example Syntax: MOVE.L SLAVE_DATA_INPUT,DATA

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTS;

elseif WT(FRWT) goto C4;
elseif DS(FRDS) {return processor acknowledge A; FDSACK*⇓

clear WT;} FCWT⇑
else {return processor acknowledge A; FDSACK*⇓

clear WT; FCWT⇑
goto C6;}

C5: {return processor acknowledge B; FDSACK*⇓
DK=1; FSDK⇑
goto C7;}

C6: {return processor acknowledge B; FDSACK*⇓
DK=0;} FCDK⇑

C7: return sequencer status;
C8: delay cycle;
C9: delay cycle;

Appendix A - FPORT Controller Normal Mode Instruction Set

88 November 1, 1995

4.1.28 SLAVE_DATA_OUTPUT

SLAVE_DATA_OUTPUT FASTBASE+$344

Description: Transfer one data word from the processor to FASTBUS in slave mode.

Example Syntax: MOVE.L DATA,SLAVE_DATA_OUTPUT

Operation: C1: FPORT select;
latch DATA; DCPBA⇑
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) got0 C4;
elseif DS(FRDS) {clear WT; FCWT⇑

DK=1; FSDK⇑
return sequencer status;
exit;}

else {clear WT; FCWT⇑
DK=0; FCDK⇑
return sequencer status;
exit;}

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 89

PIPELINE_TERMINATE Internal Subroutine

Description: Internal routine to terminate pipelined transfers.

Example Syntax:

Operation: C1: if SS1(FRSS1) clock global work counter; FCLK⇑
C2: if IRQ(SEQINT) goto INTF;

elseif DS(FRDS) continue; TIMER⇑
else goto C8;

/* termination routine for odd word count transfer */
/* check that DK is high */
/* set DS low and wait for DK low */
C3: if IRQ(SEQINT) goto INTF;

else ! DK(! FRDK) goto C3; TIMER⇑
C4: continue; /* delay cycle */
C5: continue; /* delay cycle */
C6: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C6;
else {clock global word counter; FCLK⇑

DS=0;} FCDS⇑
C7: if IRQ(SEQINT) goto INTF;

elseif ! DK(! FRDK) {RD=0; FDRD⇓
return sequencer status

exit;}
else goto C7; TIMER⇑

/* termination routine for even word count transfer */
/* check that DK is low */
C8:if IRQ(SEQINT) goto INTF;

elseif ! DK(! FRDK) {reset short timer; TIMER⇑
return sequencer status}

else goto C8;
C9:continue;
C10:continue;
C11:exit;

Appendix A - FPORT Controller Normal Mode Instruction Set

90 November 1, 1995

INTS Internal Subroutine

Description: Internal routine to abort instruction on error interrupt.
INTS assumes that processor acknowledge has not yet been returned.

Operation: C1: return processor acknowledge A; FDSACK*⇓
C2: return processor acknowledge B; FDSACK*⇓

goto INTF;

Appendix A - FPORT Controller Normal Mode Instruction Set

Novmber 1, 1995 91

INTF Internal Subroutine

Description: Internal routine to abort instruction on error interrupt.
INTF assumes that processor acknowledge has already been returned.
Exit the current FASTBUS operation by returning all signals to inactive state.

Operation: C1: {disable transceivers;
AS=0; FCAS⇑
DS=0; FCDS⇑
DK=0;} FCDK⇑

C2: delay cycle; /* processor deselect */
C3: exit;

Appendix A - FPORT Controller List Mode Instruction Set

92 November 1, 1995

4.2 FPORT Controller List Mode Instruction Set
4.2.1 BUS_ARBITRATE

BUS_ARBITRATE LISTBASE+$300

Description: Arbitrate for FASTBUS using the low byte of the data operand. Bits 0-5 supply the arbitration
vector. Bit 7 enables assured access mode. Bit 6 (prioritized access mode) is ignored.
Note that the data operand is a long word and is normally identical to the value of
CSR 8.

Example Syntax: MOVE.L CSR_8, L_BUS_ARBITRATE

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) {goto INTS;}

elseif IGK(FRDY) return sequencer status; return
else {request bus; FREQ⇑ goto C4;}

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 93

4.2.2 BUS_RELEASE

BUS_RELEASE LISTBASE+$004

Description: Release FASTBUS arbitration lock.

Example Syntax: MOVE.L DUMMY, L_BUS_RELEASE

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {DS=0; FCDS⇑

DK=0; FCDK⇑
AS=0; FCAS⇑
release bus;} FREL⇑

C5: return sequencer status;
C6: Delay Cycle; /*FPORT deselect*/
C7: Delay Cycle;
C8: Delay Cycle;

Appendix A - FPORT Controller List Mode Instruction Set

94 November 1, 1995

4.2.3 ADDRESS_DATA_GEOGRAPHICAL

ADDRESS_DATA_GEOGRAPHICAL LISTBASE+$304

Description: Perform a FASTBUS geographical primary address cycle to DATA Space.

Example Syntax: MOVE.L FB_ADDR, L_ADDRESS_DATA_GEOGRAPHICAL

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑

C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0;
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
MS=0;
EG=1; FDEG⇑
enable short timer;
goto C4;} TIMER⇑

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 95

4.2.4 ADDRESS_CSR_GEOGRAPHICAL

ADDRESS_CSR_GEOGRAPHICAL LISTBASE+$308

Description: Perform a FASTBUS geographical primary address cycle to CSR Space.

Example Syntax: MOVE.L FB_ADDR,L_ADDRESS_CSR_GEOGRAPHICAL

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑

C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0; FDMS0⇓
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
MS=1; FDMS0⇑
EG=1; FDEG⇑
enable short timer; TIMER⇑
goto C4;}

Appendix A - FPORT Controller List Mode Instruction Set

96 November 1, 1995

4.2.5 ADDRESS_DATA_LOGICAL

ADDRESS_DATA_LOGICAL LISTBASE+$30C

Description: Perform a FASTBUS logical primary address cycle to DATA Space.

Example Syntax: MOVE.L FB_ADDR,L_ADDRESS_DATA_LOGICAL

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑

C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0;
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
enable short timer; TIMER⇑
goto C4;}

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 97

4.2.6 ADDRESS_CSR_LOGICAL

ADDRESS_CSR_LOGICAL LISTBASE+$310

Description: Perform a FASTBUS logical primary address cycle to CSR Space.

Example Syntax: MOVE.L FB_ADDR,L_ADDRESS_CSR_LOGICAL

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑

C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0; FDMS0⇓
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
MS=1; FDMS0⇑
enable short timer; TIMER⇑
goto C4;}

Appendix A - FPORT Controller List Mode Instruction Set

98 November 1, 1995

4.2.7 ADDRESS_DATA_BROADCAST

ADDRESS_DATA_BROADCAST LISTBASE+$314

Description: Perform a FASTBUS broadcast primary address cycle to DATA Space.

Example Syntax: MOVE.L FB_ADDR,L_ADDRESS_DATA_BROADCAST

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑

C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0; FDMS1⇓
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
MS=2; FDMS1⇑
enable short timer;} TIMER⇑

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 99

4.2.8 ADDRESS_CSR_BROADCAST

ADDRESS_CSR_BROADCAST LISTBASE+$318

Description: Perform a FASTBUS geographical primary address cycle to CSR Space.

Example Syntax: MOVE.L FB_ADDR,L_ADDRESS_CSR_BROADCAST

Operation: C1: FPORT select;
latch FB_ADDR; DCPBA⇑

C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif AK(FRAK) {reset short timer; TIMER⇓
MS=0; FDMS0⇓, FDMS1⇓
return sequencer status;
exit;}

else {AS=1; FSAS⇑
RD=0;
MS=3; FDMS0⇑, FDMS1⇑
enable short timer; TIMER⇑
goto C4;}

Appendix A - FPORT Controller List Mode Instruction Set

100 November 1, 1995

4.2.9 ADDRESS_RELEASE

ADDRESS_RELEASE LISTBASE+$31C

Description: Release address lock.

Example Syntax: MOVE.L DUMMY,L_ADDRESS_RELEASE

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

else {DS=0; FCDS⇑
DK=0; FCDK⇑
MS=0; FDMS0⇓, FDMS1⇓,FDMS2⇓
AS=0; FSAS⇑
enable short timer;} TIMER⇑

C5: if IRQ(SEQINT) goto INTF;
elseif AK(FRAK) goto C5;
else return sequencer status;

exit;

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 101

4.2.10 DATA _RANDOM_READ

DATA _RANDOM_READ LISTBASE+$320

Description: Perform a FASTBUS single word read data cycle. FASTBUS Data word is transferred to the Data
FIFO.

Example Syntax: MOVE.L DUMMY,L_DATA _RANDOM_READ

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTS;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif DK(FRDK)
else {enable short timer; TIMER⇑

RD=1; FDRD⇑
MS=0;
DS=1; FSDS⇑
goto C4;}

C5: reset short timer; TIMER⇓
C6: if IRQ(SEQINT) INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C6;}

elseif !DK(FRDK*) {return sequencer status;
reset short timer; TIMER⇓}

else {enable short timer; TIMER⇑
RD=0; FDRD⇓
MS=0;
DS=0; FCDS⇑
goto C6;}

C7: delay cycle;
C8: delay cycle;
C9: delay cycle;

Appendix A - FPORT Controller List Mode Instruction Set

102 November 1, 1995

4.2.11 DATA _RANDOM_WRITE

DATA _RANDOM_WRITE LISTBASE+$324

Description: Perform a FASTBUS single word write data cycle.

Example Syntax: MOVE.L DATA,L_DATA _RANDOM_WRITE

Operation: C1: FPORT select;
latch DATA; DCPBA⇑

C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif DK(FRDK) reset short timer; TIMER⇓
else {enable short timer; TIMER⇑

RD=0;
MS=0;
DS=1; FSDS⇑
goto C4;}

C5: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMER⇓

goto C5;}
elseif !DK(FRDK*) {return sequencer status;

exit;}
else {enable short timer; TIMER⇑

RD=0;
MS=0;
DS=0; FCDS⇑
goto C5;}

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 103

4.2.12 DATA _SECONDARY_ADDRESS_READ

DATA _SECONDARY_ADDRESS_READ LISTBASE+$328

Description: Perform a FASTBUS secondary address read cycle. Data is transferred to the Data FIFO.

Example Syntax: MOVE.L DUMMY,L_DATA _SECONDARY_ADDRESS_READ

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTS;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif DK(FRDK)
else {enable short timer; TIMER⇑

RD=1; FDRD⇑
MS=2; FDMS1⇑
DS=1; FSDS⇑
goto C4;}

C5: reset short timer; TIMER⇓
C6: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C6;}

elseif !DK(FRDK*) {reset short timer; TIMER⇓
return sequencer status;}

else {enable short timer; TIMER⇑
RD=0; FDRD⇓
MS=2; FDMS1⇑
DS=0; FCDS⇑
goto C6;}

C7: delay cycle; /* processor deselect */
C8: delay cycle;
C9: delay cycle;

Appendix A - FPORT Controller List Mode Instruction Set

104 November 1, 1995

4.2.13 DATA _SECONDARY_ADDRESS_WRITE

DATA _SECONDARY_ADDRESS_WRITE LISTBASE+$32C

Description: Perform a FASTBUS secondary address write cycle.

Example Syntax: MOVE.L SADDR,L_DATA _SEC_ADDRESS_WRITE

Operation: C1: FPORT select;
latch SADDR; DCPBA⇑

C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif DK(FRDK) reset short timer; TIMER⇓
else {enable short timer; TIMER⇑

RD=0;
MS=2; FDMS1⇑
DS=1; FSDS⇑
goto C4;}

C5: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMER⇓

goto C5;}
elseif !DK(FRDK*) {return sequencer status;

exit;}
else {enable short timer; TIMER⇑

RD=0;
MS=0; FDMS1⇓
DS=0; FCDS⇑
goto C5;}

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 105

4.2.14 DATA _BLOCK_TRANSFER_WRITE

DATA _BLOCK_TRANSFER_WRITE
LISTBASE+$00C

Description: Output one word of a FASTBUS block transfer write cycle. Since the FSCC has been optimized as
a read-out controller, there is no FIFO to queue data to be output through the
FASTBUS port. Block transfer writes occur by executing one
DATA_BLOCK_TRANSFER_WRITE instruction for each data word to be output.
The FASTBUS sequencer maintains the proper state of DS after completion of the
instruction. The DATA_BLOCK_TRANSFER_TERMINATE instruction must then
be used to “clean-up” after a string of DATA_BLOCK_TRANSFER_WRITE
instructions have been executed. Note that the state of the MS lines are set to zero
after each DATA_BLOCK_TRANSFER_WRITE instruction is executed. This is
allowed by the FASTBUS specification, however, some slaves are confused by this
behavior. Since the DATA_BLOCK_TRANSFER_WRITE instruction effectively
leaves the state of the Sequencer, and of the attatched slave in the middle of a block
transfer operation, care should be taken to ensure that a
DATA_BLOCK_TRANSFER_TERMINATE instruction always follows any group
of DATA_BLOCK_TRANSFER_WRITE instructions.

Example Syntax: MOVE.L DATA,L_DATA _BLOCK_TRANSFER_WRITE

Operation: C1: FPORT select;
latch DATA; DCPBA⇑

C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
RD=0;
MS=1; FDMS0⇑
goto C4;}

elseif ! DS(FRDS*) {enable short timer; TIMER⇑
RD=0;
MS=1; FDMS0⇑
DS=1; FSDS⇑
goto C6;}

else {enable short timer; TIMER⇑
RD=0;
MS=1; FDMS0⇑
DS=0;} FCDS⇑

C5: if IRQ(SEQINT) goto INTF;
elseif ! DK(FRDK*) {reset short timer; TIMER⇓

RD=0;
MS=0; FDMS0⇓
return sequencer status;
exit;}

else goto C5;
C6: if (IRQ) goto INTF;

Appendix A - FPORT Controller List Mode Instruction Set

106 November 1, 1995

elseif (DK) {reset short timer; TIMER⇓
RD=0;
MS=0; FDMS0⇓
exit;}

else goto C6;

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 107

4.2.15 DATA _BLOCK_TRANSFER_TERMINATE

DATA _BLOCK_TRANSFER_TERMINATE LISTBASE+$330

Description: Perform termination step of a FASTBUS block transfer write operation. This instruction allows
the state of DS to be set low after executing one or more
DATA_BLOCK_TRANSFER_WRITE instructions. It should always be executed
after a group of DATA_BLOCK_TRANSFER_WRITE instructions have been
executed.

Example Syntax: MOVE.L DUMMY,L_DATA _BLOCK_TRANSFER_TERMINATE

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C4;
elseif !FRDK {return sequencer status; goto C5;}
else {MS=0; FDMS0⇓, FDMS1⇓, FDMS2⇓

RD=0; FDRD⇓
DS=0;} FCDS⇑

C5: delay cycle;
C6: delay cycle;
C7: delay cycle;

Appendix A - FPORT Controller List Mode Instruction Set

108 November 1, 1995

4.2.16 DATA _BLOCK_TRANSFER_READ

DATA _BLOCK_TRANSFER_READ LISTBASE+$334

Description: Perform a FASTBUS block transfer read to the Data FIFO. The block transfer is terminated upon
receipt of SS=2 from the slave, or if the number of words specified in the Local
Counter have been read (if enabled).

Example Syntax: MOVE.L DUMMY,L_DATA _BLOCK_TRANSFER_READ

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
enable FIFO; DFIFOEN⇑,PFIFOEN⇑
RD=1; FDRD⇑
MS=1; FDMS0⇑
goto C4;}

else {enable FIFO; DFIFOEN⇑,PFIFOEN⇑
RD=1; FDRD⇑
MS=1; FDMS0⇑
DS=1; FSDS⇑
local counter mode = decrement; LC0⇑, LC1⇑}

C5: {local counter mode = hold; LC0⇓, LC1⇓
enable short timer;} TIMER⇑

C6: continue; /* delay cycle */
C7: if ((FRDK*FRSS1)#SEQINT #FEOB) goto C11;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C7;}

elseif DK(FRDK) {DS=0; FCDS⇑
local counter mode = decrement; LC0⇑, LC1⇑
reset short timer; TIMER⇓
clock global word counter; FCLK⇑}

else {enable short timer; TIMER⇑
goto C7;}

C8: {local counter mode = hold; LC0⇓, LC1⇓ /* delay cycle */
enable short timer; TIMER⇑}

C9: delay cycle;
C10: if ((!FRDK*FRSS1)#SEQINT#FEOB) goto C11;

elseif WT(FRWT) {reset short timer;
goto C10;}

elseif !DK(!FRDK) {DS=1; FSDS⇑
local counter mode=decrement; LC0⇑, LC1⇑
reset short timer; TIMER⇓
clock global word counter; FCLK⇑
goto C5;}

else goto C10;

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 109

C11: if SS2(FRSS1) clock global word counter; FCLK⇑
/* block transfer termination */
C12: if IRQ(SEQINT) goto INTF;

 elseif DS(FRDS) continue;
 else goto C22;

/* termination routine for odd word count transfer */
/* check that DK is high */
/* set DS low and wait for DK low */
/* data written to FIFO on DK down is dummy word with EOE flag*/
C13:if IRQ(SEQINT) goto INTF;

elseif DK(FRDK) {reset short timer; TIMER⇓
MS=0;} FDMS0⇓

else {enable short timer; TIMER⇑
goto C13;}

C14:continue; /* delay cycle */
C15:continue; /* delay cycle */
C16:continue; /* delay cycle */
C17:if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C17;}

else {enable short timer; TIMER⇑
DS=0;} FCDS⇑

C18:if IRQ(SEQINT) goto INTF;
elseif ! DK(! FRDK) {RD=0; FDRD⇓

reset short timer; TIMER⇓
return sequencer status}

else {enable short timer; TIMER⇑
goto C18;}

C19:continue; /* delay cycle */
C20:continue; /* delay cycle */
C21:exit;
/* termination routine for even word count transfer */
C22:if IRQ(SEQINT) goto INTF; /* check that DK is low */

elseif ! DK(! FRDK) {RD=0; FDRD⇓
reset short timer; TIMER⇓
return sequencer status}

else {enable short timer; TIMER⇑
goto C22;}

C23:continue; /* delay cycle */
C24:continue; /* delay cycle */
C25:continue; /* delay cycle */
C25:exit;

Appendix A - FPORT Controller List Mode Instruction Set

110 November 1, 1995

4.2.17 DATA _PIPELINED_READ_100

DATA _PIPELINED_READ_100 LISTBASE+$338

Description: Perform a FASTBUS pipelined read to the Data FIFO at 100 nsec/word. This instruction
functions similarly to the DATA_BLOCK_TRANSFER_READ instruction except
that it follows the FASTBUS specification for Pipelined operations. Note that the
FSCC does not implement a DK counter as called for in the FASTBUS specification.

Example Syntax: MOVE.L DUMMY,L _PIPELINED_READ_100

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C4;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {enable FIFO; PFFEN⇑, DFFEN⇑

RD=1; FDRD⇑
MS=3; FDMS0⇑,FDMS1⇑
DS=1; FSDS⇑
local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C5: local counter mode = hold; LC0⇓,LC1⇓
C6: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C6;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {DS=0; FCDS⇑

local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C7: {local counter mode = hold; LC0⇓,LC1⇓
goto C4;}

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 111

4.2.18 DATA _PIPELINED_READ_200

DATA _PIPELINED_READ_200 LISTBASE+$33C

Description: Perform a FASTBUS pipelined read to the Data FIFO at 200 nsec/word. This instruction
functions similarly to the DATA_BLOCK_TRANSFER_READ instruction except
that it follows the FASTBUS specification for Pipelined operations. Note that the
FSCC does not implement a DK counter as called for in the FASTBUS specification.

Example Syntax: MOVE.L DUMMY,L_DATA _PIPELINED_READ_200

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C4;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {enable FIFO; PFFEN⇑, DFFEN⇑

RD=1; FDRD⇑
MS=3; FDMS0⇑,FDMS1⇑
DS=1; FSDS⇑
local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C5: local counter mode = hold; LC0⇓,LC1⇓
C6: continue; /* delay cycle */
C7: continue; /* delay cycle */
C8: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto PIPELINE_TERMINATE;
elseif EOB(FEOB) goto C12;
else {DS=0; FCDS⇑

local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C9: local counter mode = hold; LC0⇓,LC1⇓
C10:continue; /* delay cycle */
C11:goto C4; /* delay cycle */

Appendix A - FPORT Controller List Mode Instruction Set

112 November 1, 1995

4.2.19 DATA _PIPELINED_READ_400

DATA _PIPELINED_READ_400 LISTBASE+$340

Description: Perform a FASTBUS pipelined read to the Data FIFO at 400 nsec/word. This instruction
functions similarly to the DATA_BLOCK_TRANSFER_READ instruction except
that it follows the FASTBUS specification for Pipelined operations. Note that the
FSCC does not implement a DK counter as called for in the FASTBUS specification.

Example Syntax: MOVE.L DUMMY,L_DATA _PIPELINED_READ_400

Operation: C1: FPORT select;
return processor acknowledge A; FDSACK*⇓

C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*⇓

C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C4;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {enable FIFO; PFFEN⇑, DFFEN⇑

RD=1; FDRD⇑
MS=3; FDMS0⇑,FDMS1⇑
DS=1; FSDS⇑
local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C5: local counter mode = hold; LC0⇓,LC1⇓
C6: continue; /* delay cycle */
C7: continue; /* delay cycle */
C8: continue; /* delay cycle */
C9: continue; /* delay cycle */
C10:continue; /* delay cycle */
C11:continue; /* delay cycle */
C12:if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C12;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {DS=0; FCDS⇑

local counter mode = decrement; LC0⇑,LC1⇑
clock global word counter;} FCLK⇑

C13:local counter mode = hold; LC0⇓,LC1⇓
C14:continue; /* delay cycle */
C15:continue; /* delay cycle */
C16:continue; /* delay cycle */
C17:continue; /* delay cycle */
C18:continue; /* delay cycle */
C19:goto C4; /* delay cycle */

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 113

4.2.20 DATA _RANDOM_READ_LEADING_WORD_COUNT

DATA _RANDOM_READ_LEADING_WORD_COUNT LISTBASE+$344

Description: Perform a FASTBUS single word read data cycle. FASTBUS Data word is transferred to the
Local Word Counter (LWC).

Example Syntax: MOVE.L DUMMY,L_DATA _RANDOM_READ_LEAD_LEADING_WORD_COUNT

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C4;}

elseif DK(FRDK) {counter load, goto C5;}
else {enable short timer; TIMER⇑

RD=1; FDRD⇑
MS=0;
DS=1; FSDS⇑
goto C4;}

C5: {counter load, reset short timer; TIMER⇓}
C6: if IRQ(SEQINT) INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C6;}

elseif !DK(FRDK*) {return sequencer status;
reset short timer; TIMER⇓}

else {enable short timer; TIMER⇑
RD=0; FDRD⇓
MS=0;
DS=0; FCDS⇑
goto C6;}

C7: delay cycle;
C8: delay cycle;
C9: delay cycle;

Appendix A - FPORT Controller List Mode Instruction Set

114 November 1, 1995

4.2.21 DATA _BLOCK_TRANSFER_READ_TO_LOCAL_COUNTER

DATA _BLOCK_TRANSFER_READ_LOCAL_COUNTER
LISTBASE+$348

Description: Perform a FASTBUS block transfer read to the Data FIFO, place the first word transferred into the
Local counter. If the Local Counter is enabled, the transfer will then terminate after
the number of words specifed in the first word of the transfer (non-inclusive) have
been input.

Example Syntax: MOVE.L DUMMY,L_DATA _BLOCK_TRANSFER_READ_TO...

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
enable FIFO; DFIFOEN⇑,PFIFOEN⇑
RD=1; FDRD⇑
MS=1; FDMS0⇑
goto C4;}

elseif DK(FRDK) local counter mode = load; LC0⇓, LC1⇑
goto C5;}

else {RD=1; FDRD⇑
MS=1; FDMS0⇑
DS=1; FSDS⇑
goto C4;}

C5: {local counter mode = load; LC0⇓, LC1⇑
goto }

C6: continue; /* delay cycle */
C7: if ((FRDK*FRSS1)#SEQINT #FEOB) goto C11;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C7;}

elseif DK(FRDK) {DS=0; FCDS⇑
local counter mode = decrement; LC0⇑, LC1⇑
reset short timer; TIMER⇓
clock global word counter; FCLK⇑}

else {enable short timer; TIMER⇑
goto C7;}

C8: {local counter mode = hold; LC0⇓, LC1⇓ /* delay cycle */
enable short timer; TIMER⇑}

C9: delay cycle;
C10: if ((!FRDK*FRSS1)#SEQINT#FEOB) goto C11;

elseif WT(FRWT) {reset short timer;
goto C10;}

elseif !DK(!FRDK) {DS=1; FSDS⇑
local counter mode=decrement; LC0⇑, LC1⇑
reset short timer; TIMER⇓

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 115

clock global word counter; FCLK⇑
goto C5;}

else goto C10;
C11: if SS2(FRSS1) clock global word counter; FCLK⇑
/* block transfer termination */
C12: if IRQ(SEQINT) goto INTF;

 elseif DS(FRDS) continue;
 else goto C22;

/* termination routine for odd word count transfer */
/* check that DK is high */
/* set DS low and wait for DK low */
/* data written to FIFO on DK down is dummy word with EOE flag*/
C13:if IRQ(SEQINT) goto INTF;

elseif DK(FRDK) {reset short timer; TIMER⇓
MS=0;} FDMS0⇓

else {enable short timer; TIMER⇑
goto C13;}

C14:continue; /* delay cycle */
C15:continue; /* delay cycle */
C16:continue; /* delay cycle */
C17:if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER⇓
goto C17;}

else {enable short timer; TIMER⇑
DS=0;} FCDS⇑

C18:if IRQ(SEQINT) goto INTF;
elseif ! DK(! FRDK) {RD=0; FDRD⇓

reset short timer; TIMER⇓
return sequencer status}

else {enable short timer; TIMER⇑
goto C18;}

C19:continue; /* delay cycle */
C20:continue; /* delay cycle */
C21:exit;
/* termination routine for even word count transfer */
C22:if IRQ(SEQINT) goto INTF; /* check that DK is low */

elseif ! DK(! FRDK) {RD=0; FDRD⇓
reset short timer; TIMER⇓
return sequencer status}

else {enable short timer; TIMER⇑
goto C22;}

C23:continue; /* delay cycle */
C24:continue; /* delay cycle */
C25:continue; /* delay cycle */
C25:exit;

Appendix A - FPORT Controller List Mode Instruction Set

116 November 1, 1995

4.2.22 TRIGGER_HOLD

TRIGGER_HOLD LISTBASE+$02C

Description: Poll Trigger FIFO empty flag and wait if FIFO is empty.

Example Syntax: MOVE.L DUMMY,L_TRIGGER_HOLD

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: delay;
C5: if IRQ(SEQINT) goto INTF;

elseif TFIFO_NOT_EMPTY {exit;}
else {goto C4;}

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 117

4.2.23 INSTRUCTION_LIST_RE-EXECUTE

INSTRUCTION_LIST_RE-EXECUTE LISTBASE+$030

Description: Toggle List FIFO Retransmit Input.

Example Syntax: MOVE.L DUMMY,L_INSTRUCTION_LIST_RE-EXECUTE

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {set list FIFO re-ex input true, SRT⇑;}
C5: {set list FIFO re-ex input true, SRT⇑;}
C6: {set list FIFO re-ex input true, SRT⇑;}
C7: {set list FIFO re-ex input true, SRT⇑

exit;}

Appendix A - FPORT Controller List Mode Instruction Set

118 November 1, 1995

4.2.24 GENERATE_FPCREQ (IRQ)

GENERATE_FPCREQ (IRQ) LISTBASE+$01C

Description: Toggle FPCREQ interrupt to CPU.

Example Syntax: MOVE.L DUMMY,L_GENERATE_FPCREQ

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {set FPCREQ interrupt line true, FPCREQ⇑;}
C5: {set FPCREQ interrupt line true, FPCREQ⇑;

exit;}

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 119

4.2.25 POLL_HALT_REQUEST

POLL_HALT_REQUEST LISTBASE+$034

Description: Check for HALT_REQUEST from CPU. Halt Sequencer if true, exit if false.

Example Syntax: MOVE.L DUMMY,L_POLL_HALT_REQUEST

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: delay;
C5: if HALT_REQUEST {return processor acknowledge A, FDSACK*⇓,goto C6;}

else exit;
C6: {return processor acknowledge B, FDSACK*⇓}
C7: goto C7 /*stay here forever to “HALT” the sequencer*/

Appendix A - FPORT Controller List Mode Instruction Set

120 November 1, 1995

4.2.26 DELAY2

DELAY2 LISTBASE+$038

Description: Cause a 2 microsecond delay between previous instruction completion, and following instruction
initiation.

Example Syntax: MOVE.L DUMMY,L_DELAY2

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: load Sequencer counter with 31d;
C5: decrement Sequencer counter and loop to C5 until counter = 0;
C6: exit;

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 121

4.2.27 DELAY10

DELAY10 LISTBASE+$03C

Description: Cause a 10 microsecond delay between previous instruction completion, and following instruction
initiation.

Example Syntax: MOVE.L DUMMY,L_DELAY10

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: load Sequencer counter with 191d;
C5: decrement Sequencer counter and loop to C5 until counter = 0;
C6: exit;

Appendix A - FPORT Controller List Mode Instruction Set

122 November 1, 1995

4.2.28 DELAY100

DELAY100 LISTBASE+$040

Description: Cause a 100 microsecond delay between previous instruction completion, and following instruction
initiation.

Example Syntax: MOVE.L DUMMY,L_DELAY2

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: load Sequencer counter with 10d;
C5: push Sequencer counter value into stack and load counter with 177d;
C6: decrement Sequencer counter and loop to C6 until counter = 0;
C7: load Sequencer counter with value popped from stack;
C8: decrement Sequencer counter and loop to C5 until counter = 0;
C9: delay
C10: exit;

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 123

4.2.29 SEQUENCER_NULL

SEQUENCER_NULL LISTBASE+$020

Description: Access the FPORT Controller without performing any operation.

Example Syntax: MOVE.L DUMMY,L_SEQUENCER_NULL

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {return sequencer status;

exit;}

Appendix A - FPORT Controller List Mode Instruction Set

124 November 1, 1995

4.2.30 BULB_TEST

BULB_TEST LISTBASE+$028

Description: Diagnostic to set all driven FASTBUS lines true.

Example Syntax: MOVE.L DUMMY,L_BULB_TEST

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {Set FPCREQ interrupt; FPCREQ⇑,

latch output data,
EG=1; FDEG⇑,
RD=1; FDRD⇑,
MS=7; FDMS0⇑,FDMS1⇑,FDMS2⇑,
DK=1; FSDK⇑,
DS=1; FSDS⇑,
AS=1; FSAS,⇑
goto C4}

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 125

4.2.31 LOCAL_COUNTER_LOAD

LOCAL_COUNTER_LOAD LISTBASE+$010

Description: Initialize Local Word Counter for block transfer.

Example Syntax: MOVE.L COUNT,L_LOCAL_COUNTER_LOAD

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {local counter mode = load;} LC1⇑
C5: {local counter mode = hold;} LC1⇓
C6: return sequencer status;
C7: delay cycle;
C8: delay cycle

Note: The counter is loaded from the low order 12 bits of COUNT.

Appendix A - FPORT Controller List Mode Instruction Set

126 November 1, 1995

4.2.32 LOCAL_COUNTER_READ

LOCAL_COUNTER_READ SLOWBASE+$014

Description: Transfers current value of Local Word Counter into Data FIFO.

Example Syntax: MOVE.L DUMMY,L_LOCAL_COUNTER_READ

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {local counter mode = read;} SLCOE⇑
C5: return sequencer status;
C6: delay cycle;
C7: delay cycle;

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 127

4.2.33 FIFO_WRITE_DATA

FIFO_WRITE_DATA LISTBASE+$018

Description: Write a single word from the processor to the Data FIFO.

Example Syntax: MOVE.L DATA,L_FIFO_WRITE_DATA

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: {clock FIFO input;} SDW⇑
C5: {clock global word counter;} FCLK⇑
C6: return sequencer status;
C7: delay cycle;
C8: delay cycle;

Appendix A - FPORT Controller List Mode Instruction Set

128 November 1, 1995

4.2.34 END_OF_EVENT

END_OF_EVENT LISTBASE+$024

Description: Write dummy word to the data FIFO with the End-Of-Event bit set, and send Control EOE to
OPORT to start output.

Example Syntax: MOVE.L DUMMY,L_END_OF_EVENT

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: set EOE flag to data FIFO; DEOE⇑

set FIFO data write; SDW⇑
C5: negate FIFO data write;
C6: set FIFO data write; SDW⇑;
C7: negate FIFO data write

negate EOE flag to data FIFO
set EOE flag to Output Port; CEOE⇑;

C8: hold EOE flag to Output Port true
return sequencer status;

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 129

4.2.35 TRIGGER_HOLD_WITH_HALT_REQUEST

TRIGGER_HOLD_WITH_HALT_REQUEST LISTBASE+$02C

Description: Poll Trigger FIFO empty flag and Halt Request from CPU. If TFIFO is not empty, then exit, elseif
HALT_REQUEST, then halt, else wait.

Example Syntax: MOVE.L DUMMY,L_TRIGGER_STROBE_HOLD_WITH_HALT_REQUEST

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: delay;
C5: if IRQ(SEQINT) goto INTF;

elseif TFIFO_NOT_EMPTY {exit;}
elseif HALT_REQUEST {return processor acknowledge A, FDSACK*⇓,goto C6;}
else {goto C5;}

C6: {return processor acknowledge B, FDSACK*⇓}
C7: goto C7 /*stay here forever to “HALT” the sequencer*/

Appendix A - FPORT Controller List Mode Instruction Set

130 November 1, 1995

PIPELINE_TERMINATE Internal Subroutine

Description: Internal routine to terminate pipelined transfers.

Example Syntax:

Operation: C1: if SS1(FRSS1) clock global work counter; FCLK⇑
C2: if IRQ(SEQINT) goto INTF;

elseif DS(FRDS) continue; TIMER⇑
else goto C8;

/* termination routine for odd word count transfer */
/* check that DK is high */
/* set DS low and wait for DK low */
C3: if IRQ(SEQINT) goto INTF;

else ! DK(! FRDK) goto C3; TIMER⇑
C4: continue; /* delay cycle */
C5: continue; /* delay cycle */
C6: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C6;
else {clock global word counter; FCLK⇑

DS=0;} FCDS⇑
C7: if IRQ(SEQINT) goto INTF;

elseif ! DK(! FRDK) {RD=0; FDRD⇓
return sequencer status

exit;}
else goto C7; TIMER⇑

/* termination routine for even word count transfer */
/* check that DK is low */
C8:if IRQ(SEQINT) goto INTF;

elseif ! DK(! FRDK) {reset short timer; TIMER⇑
return sequencer status}

else goto C8;
C9:continue;
C10:continue;
C11:exit;

Appendix A - FPORT Controller List Mode Instruction Set

Novmber 1, 1995 131

INTF Internal Subroutine

Description: Internal routine to abort instruction on error interrupt.
INTF assumes that processor acknowledge has already been returned.
Exit the current FASTBUS operation by returning all signals to inactive state.

Operation: C1: {disable transceivers;
AS=0; FCAS⇑
DS=0; FCDS⇑
DK=0;} FCDK⇑

C2: delay cycle; /* processor deselect */
C3: exit;

Appendix B - FSCC Parts List

132 November 1, 1995

5. Appendix B - FSCC Parts List

Appendix B - FSCC Parts List

Novmber 1, 1995 133

Item Quan Manf. # Description Manf.
1 1 MP037-3.6864 MHz 3.6864 MHz Crystal CTS

2 3 .01uF Non-Polarized Capacitor

3 12 8134-HC-6P2 .057" FUSE Sockets AUGAT

4 5 .1uF 25V Non-Polarized Capacitor

5 125 .1uF Ceramic, Dip Cap

6 3 1077-3 PC mount Coaxial Connector, K-Loc Kings

7 1 1074-1 Panel Mount Coaxial Connector, K-Loc Kings

8 1 4-2-2 Ground Lug for Panel Mount K-Loc
Connector

Kings

7 3 4310R-101-101 10 Pin Sip PAK, 100 Ohms Bourns

8 2 SL-110-G-19 10 Pin Sip Socket Samtec

9 2 4310R-102-101 10 Pin Sip, 100 Ohms, 5 Individual Res. Bourns

10 2 7039-SS MOD E=1/2 10/32 Shoulder Screws R.A.F. Elect.

11 1 100pF Non-Polarized Capacitor

12 2 PAL1016P8JC 10KH ECL PAL TI

13 3 ICO-316-SGG 16 Pin Dip Socket, 300 mils wide Samtec

14 2 4310R-101-102 1K Ohm, 10-Pin Sip PAK Bourns

15 1 1N914 1N914 Diode Motorola

16 1 ICO-320-SGG 20 Pin Dip Socket, 300 mils wide Samtec

17 1 MP200-20MHz 20.000 MHz Crystal CTS

18 2 20pF Non-Polarized Capacitor

19 16 GAL22V10-15LP 22V10 Reprogramable AND-OR Array Lattice

20 1 GAL20RA10-15LP 20RA10 Reprogramable PAL Lattice

21 2 EPM5128JC-1 128 macrocell EPLD Altera

22 19 ICO-324-SGG 24 Pin Dip Socket, 300 mils wide Samtec

23 7 110-99-328-41-001 28 Pin Dip Socket, 300 mils wide Preci-Dip

24 15 ICO-628-SGG 28 Pin Dip Socket, 600 mils wide Samtec

25 8 ICO-432-SGG 32 Pin Dip Socket, 400 mils wide Samtec

26 8 ICO-632-SGG 32 Pin Dip Socket, 600 mils wide Samtec

27 2 68 Pin JLCC Socket AMP

28 1 Single Pin Socket Samtec

29 1 CPAS-114-ZSGG-13A 114 Pin Grid Array Socket Samtec

30 2 BBS-132-T-A Board to Board Stand-off Socket Samtec

31 1 Board to Board Stand-off Pin Samtec

32 1 2 x 5 pin, right angle jumper block Samtec

33 6 2-pin slide on jumper

34 1 IDT7133S70G 2K X 16-Bit, Dual-Port RAM (Master) IDT

35 1 IDT7143S70G 2K X 16-Bit, Dual-Port RAM (Slave) IDT

36 1 MC68020RC20 32-Bit Microprocessor (20 MHz) Motorola

38 8 CXK581020SP-45 128K X 8-Bit CMOS 45ns Static RAM Sony

39 2 RA0.304NYL 4-Pin LEMO Connector LEMO

40 4 4-40 X 1/4" Bind Head Screw

41 1 MX055GA-2C-40 MHz 40 MHz Oscillator CTS

Appendix B - FSCC Parts List

134 November 1, 1995

42 6 ICO-640-SGG 40 Pin Dip Socket, 600 mils wide Samtec

43 1 ICA-648-SGG 48 Pin Dip Socket, 600 mils wide Samtec

44 1 MC10H166 5-Bit Magnitude Comparator Motorola

45 2 5pF Non-Polarized Capacitor

46 1 2VP5U9 5V-IN,9V-OUT,DC-DC Converter Reliability

47 3 6.8uF Polarized Capacitor

48 8 AM27C512-120 64K X 8 Bit CMOS EPROM 120 ns AMD

49 4 M27C4001-80XFI 512K X 8 Bit CMOS EPROM 80 ns SGS
Thompson

50 2 MVAS-68-ZSGG-11 68 Pin Grid Array Socket Samtec

51 1 PT10312 75uH, Pulse Transformer Datatronics

52 1 N74F823N 9-Bit D-Type Edge-Triggered Flip Signetics

53 1 558-0202-003 Dialight Green LED with Integral RES Dialight

54 1 558-0302-003 Dialight Yellow LED with Integral RES Dialight

55 2 MC10H131 Dual D-Type Master-Slave Flip-Flop Motorola

56 1 SCN68681C1N40 Duart Signetics

57 9 BT501KC ECL/TTL Octal Transceiver/Translator Brooktree

58 1 P82C501-10MHz Ethernet Serial Interface Intel

59 1 DP8392A Ethernet Transceiver Chip National

60 2 0882-MB-199070 FASTBUS Front Panel Mounting
Bracket

FNAL
Drawing

61 1 534974-9 FASTBUS Module Auxiliary Connector AMP

62 1 1-102585-3 FASTBUS Module Segment Connector AMP

63 1 FSCC Front Panel

64 1 FSCC P.C. Board

65 1 DAH017 FSCC Trigger FIFO Daughter Board

66 1 SN74AS832BN HEX 2-Input or Drivers TI

67 1 P82586-10MHz Local Area Network Coprocessor Intel

68 2 3428-5302 Male 20-Pin 100M X 100M Dip Header 3M

69 1 MC68901 Multi-Function Peripheral Motorola

70 1 LM555CN NE555 Precision Timer RCA

71 4 N74F545N Octal Bi-directional Transceiver, 3-state Signetics

72 3 N74F1244 Octal Buffer and Driver, 3-State Signetics

73 4 N74F646N Octal Bus Transceiver, 3-State Signetics

74 3 N74F825N Octal D-Type Edge-Triggered Flip-Flops Signetics

75 4 N74F574N Octal D-Type Flip-Flop w/3-State
Outputs

Signetics

76 1 N74F573N Octal Transparent Latch w/3-State
Outputs

Signetics

77 1 SN74LS38 Open-Collector TTL NAND Gate Signetics

78 1 227726-1 Isolated BNC Solder Jack Assembly AMP

80 4 LH5499-35 Parallel 4096 x 9-Bit FIFO 35 ns Sharp

81 10 LH5496-35 Parallel 512 X 9-Bit FIFO 35 ns Sharp

82 1 LH5496D-20 Parallel 512 X 9-Bit FIFO 20 ns Sharp

83 1 IDT72413L45P 64 x 5-bit FIFO chip IDT

84 2 MC68230P10 Parallel Interface/Timer Motorola

Appendix B - FSCC Parts List

Novmber 1, 1995 135

85 1 251.010 10 Amp Subminiature Fuse Pico

86 4 251.005 5 Amp Subminiature Fuse Pico

87 1 251.001 1 Amp Subminiature Fuse Pico

88 2 ITCE-5 Tranzorb for 5 and 5.2 Volt supply

89 1 Tranzorb for 2 Volt supply

90 1 MC10H103 Quad 2-Input or Gate Motorola

91 1 UA96174 Quadruple Differential Line Driver Fairchild

92 2 UA96175 Quadruple Differential Line Receiver Fairchild

93 4 Resistor 1.5K 1/8W 5%

94 1 Resistor 100K 1/8W 5%

95 1 Resistor 10K 1/8W 5%

96 1 Resistor 150 1/8W 5%

97 17 Resistor 1K 1/8W 5%

98 1 Resistor 1K 1/8W 1%

99 4 Resistor 1M 1/8W 5%

100 10 Resistor 20 1/4W 5%

101 5 Resistor 220 1/8W 5%

102 2 Resistor 240 1/4W 5%

103 6 Resistor 39 1/8W 5%

104 1 MAX233C RS232 Driver/Receiver Maxim

105 1 8121-S-D-A6-G-E SPDT Push Button Switch C&K

106 4 EPS448DC-25 Stand-Alone Microsequencer 25 MHz Altera

107 3 SAM448-30 Stand-Alone Microsequencer 30 MHz Waferscale

110 1 DS1386-8K Watchdog Timekeeper, R/TClock,
NVRAM

Dallas Semi.

111 8 3-pin jumper block

112 1 DAH-017PC Rev b Trigger FIFO Child Board Assembly Bira Systems

Appendix C - FSCC Documentation

136 November 1, 1995

6. Appendix C - FSCC Documentation

Appendix C - FSCC Documentatin

Novmber 1, 1995 137

Fermilab Drawing Numbers

FNAL # TitleDescription
0882-MB-199070 Mounting Bracket FASTBUS Module Front Panel

Mount
0880.000-ED-215714 FSCC/VDAS Interface E771 FSCC/VDAS interface

schematic
0880.000-ED-269065 FSCC/VDAS Interface E791 FSCC/VDAS interface

schematic
0880.000-AC-269129 FSCC Layer 1 Trace Layer 1
0880.000-AC-269130 FSCC Layer 2 -2.0V & -5.2V Layer 2
0880.000-AC-269131 FSCC Layer 3 Ground Layer 3
0880.000-AC-269132 FSCC Layer 4 +5.0V Layer 4
0880.000-AC-269133 FSCC Layer 5 Trace Layer 5
0880.000-AC-269134 FSCC Top Silk Top Silkscreen Photo
0880.000-AC-269135 FSCC Bot Silk Bottom Silkscreen Photo
0880.000-AC-269136 FSCC Solder Mask Top & Bot. Solder Mask
0880.000-AC-269137 FSCC Front Panel Front Panel Silkscreen Photo
0880.000-MD-269138 FSCC Assembly Assembly drawing
0880.000-MD-269139 FSCC Front Panel Front Panel Mechanical Drawing
0880.000-MD-269140 FSCC Mechanical Board Dimensions & Pads
0880.000-MD-269141 FSCC Test Interface (FSCCTI) Test Board Schematic
0880.000-MD-269143 FSCC Schematic 11 Page Schematic and Block

Diagram

Fermilab Documents

FASTBUS Smart Crate Controller - PC3, Design Specification
Fermilab Computing Division

Mark Bernett - Online and Data Acquisition Software Groups
Mark Bowden, Rick Kwarciany, John Urish - Data Acquisition Electronics Group

Fermilab Physics Department Gustavo Cancelo

Diagnostics for the FASTBUS Smart Crate Controller - PN417
Fermilab Computing Division

Mark Bernett, Dave Slimmer - Online and Data Acquisition Software Groups
Fermilab Computing Division

Richard Kwarciany, John Urish - Data Acquisition Electronics Group

Release Notes for SCG68K V2.3 - PN 376
David M. Berg, Bryan MacKinnon - Fermilab Computing Division

Online Systems Software Group

SCG68K User’s Guide and Reference - PN369
Peter Heinicke, David Berg, Bryan MacKinnon, Tom Nicinski, Gene Oleynik -

Appendix C - FSCC Documentation

138 November 1, 1995

Fermilab Computing Division, Online Systems and Data Acquisition Software Groups

Serial Port Driver for the PAN-DA pSOS Environment - PN379.2
Bryan MacKinnon - Fermilab Computing Division, Data Acquisition Software Group

Dart Data Acuisition System Data, Permit & Trigger Link Interface Specification - ESE-DART-950511
John Anderson, Ed Barsotti - Fermilab Computing Division, ESE Department.

Non-Fermilab Documents

IEEE Standard FASTBUS
IEEE 960

Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street
New York, New York - 10017

68020 32-Bit Microprocessor Manual
Motorola Literature Distribution
P.O. Box 20912
Phoenix, AZ 85036

FASTBUS Standard Routines
DOE/ER 0325

National Technical Information Service, U.S. Dept. of Commerce
Springfield, Virginia 22161

FSCC Programmable Devices

FSCC Version PC4b Microcode and PLD Source Listings - HN 137
Mark Bowden, Gustavo Cancelo, Richard Kwarciany - Fermilab Computing Division, Data Acquisition Hardware
Group, Online Systems Department.

Appendix D - EPROM Labeling

Novmber 1, 1995 139

7. Appendix D - FSCC EPROM Labeling

Appendix D - EPROM Labeling

140 November 1, 1995

ROM BANK 1;

FSCC B1 V 1.0
PSOS/PROBE
092090/1F43

PROM BOARD BYTE POSTION (0-3)

APPLICATION

CHECKSUM

RELEASE DATE

ROM BANK 2;

OPTION 1; System Diagnostic Tests

FSCC B0 V 1.0

092090/1F43

PROM BOARD BYTE POSTION (0-3)

APPLICATION

CHECKSUM

RELEASE DATE

FSCC0 V 1.0

092090/1F43

PROM BOARD BYTE POSTION (0-3)

VERSION NUMBER

APPLICATION

CHECKSUM

RELEASE DATE

OPTION 2; Individual Module Tests

 OPERATING SYSTEM AND FSCC DIAGNOSTICS

SYSTEM OR INDIVIDUAL MODULE DIAGNOSTICS

(FSCC ROM BANK 1)
VERSION NUMBER

SSD SYST DIAG

SSD MOD DIAG

(FSCC ROM BANK 0)
VERSION NUMBER

Appendix E - FSCC PC4 Assembly Drawing

Novmber 1, 1995 141

8. Appendix E - FSCC PC4 Assembly Drawing

Appendix E - FSCC PC4 Assembly Drawing

142 November 1, 1995

Figure 18 FSCC Component View

Appendix F - FSCC Version History

Novmber 1, 1995 143

9. Appendix F- FSCC Version History

Appendix F - FSCC Version History

144 November 1, 1995

9.1 PC1
Prototype FSCC’s were designated version PC1. A small number of PC1 FSCC’s were built for testing and

proof of concept purposes. PC1 modules were not widely used.

9.2 PC2 and PC3
The first production FSCC’s were designated Version PC2. After some time in use, design changes were

added to these modules. PC3 FSCC’s were functionally identical to the modified PC2 modules. The difference is
that the newer modules had the changes to the PC2 boards incorporated into the PC board layout.

9.3 PC4
9.3.1 Overview

The primary goals of the FSCC Version PC4 update project were to increase the processor's memory
capacity, to replace obsolete components which were no longer in production, and to be able to complete the
project in a matter of two to four months. It was also desired to maintain backward software compatibility to avoid
unnecessary software redesign.

Secondary goals included expansion of Non-Volatile RAM size, increasing FASTBUS Data FIFO capacity,
adding an instruction FIFO to the FASTBUS List FIFO, and bug fixes.

9.3.2 Replacement of Obsolete Components
Three of the FSCC's functions were implemented in PLD devices which have been discontinued by the

manufacturer. Specifically, the EPB1400 Erasable Programmable Logic Device (EPLD) manufactured by the
Altera Corporation was discontinued in 1991. The Global Word Counter & Header Latch, the Output Port
Controller Interface (not shown on block diagram), and the Ethernet Port Controller to Ethernet Dual Port Memory
Interface (also not shown on block diagram) are the functions affected. The Global Word counter & Header Latch,
and the Output Port Controller Interface were redesigned using EPM5128 EPLD devices also manufactured by the
Altera Corporation. The Ethernet Port Controller to Ethernet Dual Port Memory Interface was redesigned using
conventional PALs (22V10's). All three of the redesigned circuits were completed with backward software
compatibility intact.

9.3.3 Memory Expansion
9.3.3.1 Processor RAM Expansion

All FSCC's produced prior to version PC4 featured Motorola 68020 processors with 256 KBytes of zero
wait state static RAM. The PC4 FSCC's are capable of having up to 4 MBytes of zero wait state RAM installed
when 512K x 8-bit SRAM devices become available. Eight 256K x 8 bit devices can also be installed yielding 2
MBytes of RAM, and 128K x 8-bit devices will give 1 MByte of RAM. Switching between the different sized
devices requires changing jumpers on the board, and changing PAL programming. In order to install more than 1
MByte of RAM, the memory map of the FSCC must also be changed. To make this change, jumpers on the board
must be changed, and some of the processor's control PALs must be reprogrammed. Version PC4 FSCC's with the
current memory map have 1 MByte of RAM installed.

The following FSCC PAL's must be reprogrammed to change RAM configurations:
DECO1 (Address Decoders)
DECO2
DECO3
DSGEN (Data Strobe Acknowledge Generator)

Table 20 FSCC RAM Configuration Options

Total RAM FSCC Version Memory Map Devices Installed
128 KBytes PC3 Version 1 4-32K x 8 bit
256 KBytes PC3 Version 1 8-32K x 8 bit
1 MByte PC4 Version 1 4-256K x 8 bit
2 MBytes PC4 Version 2 8-256K x 8 bit
4 MBytes PC4 Version 2 8-512K x 8 bit

Appendix F - FSCC Version History

Novmber 1, 1995 145

9.3.3.2 Processor EPROM Expansion
EPROM on PC3 and older FSCC’s was limited to 512 KBytes running with two wait states. PC4 FSCC’s

have 2 MBytes of EPROM installed with the current memory map, and are capable of having 4 MBytes total
installed if the memory map was changed. EPROM on PC4 boards runs with one wait state. Changing the FSCC’s
memory map involves changing jumpers on the board, and reprogramming the following PALs:

DECO1 (Address Decoders)
DECO2
DECO3
DSGEN (Data Strobe Acknowledge Generator)

9.3.3.3 Processor NVRAM Expansion
Expanding the Non-Volatile RAM on the PC4 FSCC was done by replacing the DALLAS Semiconductor

DS1286 NVRAM/RTC chip with a DS1386 by the same company. This device is functionally identical to the
DS1286 except that it has 8 K or 32K Bytes of Non-Volatile RAM where the 1286 has only 50 bytes. The PC4
parts list currently specify the 8K devices, although the board will accept the 32K parts. Since these components
are taller than a standard DIP device, it is not possible to use a socket and the NVRAM chip is permanently
installed. Therefore, upgrading to the 32 K devices should only be considered when making new boards.

9.3.4 List FIFO Modifications
In order to allow the FASTBUS List FIFO to be used more easily, eight bits have been added to the List

FIFO to allow FASTBUS Instructions to be stored in the List FIFO as well as FASTBUS data. This eliminates the
need to write special microcode for each application where the List FIFO is used. The microcode driver needed to
use the larger List FIFO is labeled "FBILSTVx" (where x is the version number), and is installed in the "User"
microsequencer sockets. By default, the List FIFO and User microsequencer are disabled, and the Standard
FASTBUS microsequencer is enabled. This allows the FASTBUS interface of the PC4 version of the FSCC to
otherwise function identically to that of the PC3 version.

To use the List FIFO, it must be reset, loaded with a list of FASTBUS instructions, the User microsequencer
must be enabled, and then the List FIFO must be enabled.

The List FIFO reset line (SRS*) is a low true signal ("0"=reset) which is connected to Parallel Port 1 bit C6.
This bit must be configured as an output, then toggled low to reset the List FIFO. It must be left in a high state
(PP1 bit C6 = "1") to use the List FIFO.

Example:
ORI.B #$40,$0064000C *Set List FIFO Reset bit to not-reset
ANDI.B #$40,$00640004 *Configure List FIFO Reset bit as PP output
ANDI.B #$BF,$0064000C*Set List FIFO Reset bit true (reset)
ORI.B #$40,$0064000C *Set List FIFO Reset bit false (not-reset)

The List FIFO Reset bit is configured as an output, and set false (not-reset) by the FSCC monitor
PROBE/PSOS/DETH (V1.1 and later). Therefore, the first two instructions in the example are not necessary if
this monitor is used.

To load the List FIFO, the list FASTBUS instructions are written to the FIFO in order of execution in a
manner similar to normal FASTBUS instruction execution. The FASTBUS list instruction vectors (lower 10 bits
of memory mapped FASTBUS instruction addresses) are identical to the instruction vectors of the standard
FASTBUS instruction addresses. The address decoder portion of the FASTBUS instruction address (upper 22 bits)
is the only difference.

Example:

Address Function
00620300 Normal FASTBUS Arbitrate instruction
00600304 Normal FASTBUS Primary Address instruction
006A0300 List FASTBUS Arbitrate instruction
006A0304 List FASTBUS Primary Address instruction

Appendix F - FSCC Version History

146 November 1, 1995

A complete list of FASTBUS list instructions is included in section 2 of the FSCC Manual.
After loading, the List FIFO microcode must be initialized by enabling the User microsequencer with the

following instruction:

MOVE.L #$0,$006C0020 *Select User Microsequencer

This special microsequencer instruction is the only instruction which is executed by both the standard FASTBUS
microsequencer and the user FASTBUS microsequencer. It causes the User microsequencer to enable itself, and
causes the Standard FASTBUS microsequencer to disable itself. This instruction must be executed after the
FASTBUS sequencer is taken out of reset, and before any other FASTBUS instructions are executed. Executing
this instruction more than once after a reset has no effect. To return control of the FSCC’s FASTBUS interface
back to the standard microsequencer, the FASTBUS interface must be reset. This is done with the SNRESET* bit
in Parallel Port 2, or by pressing the Reset switch on the front panel.

Once the user sequencer is selected, the List FIFO is then enabled by setting the List FIFO Enable bit high
in Parallel Port 2 bit A6. Note that this bit must be configured as an output as in the following example before it
can be set high.

Example:

Set List FIFO enable bit to its default state, configure it as an output, then set it true
ANDI.B #$BF,$00660008 *Set PP2A bit 6 low
ORI.B #$40,$00660002 *Configure PP2A bit 6 as an output

ORI.B #$40,$00660008 *Set PP2A bit 6 high (List FIFO enabled)

The List FIFO Enable bit becoming true will allow the microsequencer to start executing the List.
The List FIFO Retransmit line is available at Parallel Port 2 bit B5. By toggling this bit list execution can

be repeated without reloading the FIFO.

Example:

Set List Retransmit bit to its non-active state, then configure it as a parallel port output
ORI.B #$20,$00660009 *Set LRT* bit initial condition (Low true signal)
ORI.B #$20,$00660002 *Configure LRT* bit as an output

Toggle List Retransmit bit true, then false to re-execute FASTBUS instruction list
ANDI.B #$DF,$00660009 *Set LRT* bit true
ORI.B #$20,$00660009 *Set LRT* bit false

Re-execution of the list will start with LRT* being set true.
Note that the List Retransmit bit and the List FIFO Enable bit are pulled in hardware to their default (non-

active) levels. Therefore, if these bits are not configured as outputs, the FASTBUS interface will function
identically to a version PC3 board. Version 1.2 and greater of the FSCC standard monitor PROBE/PSOS/DETH
will have the List FIFO Retransmit and List FIFO Enable bits configured as parallel port outputs, and set to their
non-active states by default. If this or a later version of the standard FSCC monitor is used, the first two processor
instructions in the previous two examples may be deleted.

9.3.5 Data FIFO Modifications
PC3 FSCC’s have a 2K x 32-bit FASTBUS data FIFO’s installed. PC4 FSCC’s have a 4K x 32-bit

FASTBUS data FIFO installed. The PC4 data FIFO is otherwise functionally identical to the PC3 Data FIFO.
9.3.6 Tranzorb and Fusing Changes

In order to enhance the FSCC’s ability to withstand power supply over voltage failures, PC4 FSCC’s have
been equipped with tranzorbs on the +5 Volt, -5.2 Volt, and -2 Volt power supplies. PC3 FSCC’s also used parallel

Appendix F - FSCC Version History

Novmber 1, 1995 147

fuses on the +5, and -5.2 Volt power supplies. These have been replaced with one larger fuse on each of these two
supplies.

9.3.7 Bug Fixes
A hardware bug involving slave operation of the FASTBUS interface in PC3 and earlier FSCC’s has been

identified and corrected in PC4 FSCC’s. The bug involves the FSCC’s ability to respond to being addressed on
FASTBUS. Specifically, PC3 boards have no ability to know if they have been addressed in CSR or DATA space.
PC4 FSCC’s have the FASTBUS line MS0 latched, and connected to Parallel Port 2 bit A5. After the FSCC has
been addressed as a slave on FASTBUS, the status of PP2 bit A5 can be tested to determine if the address cycle
was to CSR or DATA space. If the bit is a "1" the address cycle is to CSR space, if the bit is a "0" the address
cycle is to DATA space.

Two microcode bugs have also been identified in the standard FASTBUS microcode FBSEQV2 dated 9-24-
90. The first problem is that FASTBUS GK is not cleared by either a FASTBUS sequencer reset, or a hard reset.
This bug has been fixed in FBSEQV2 dated 8-18-92 which is installed on all PC4 FSCC’s. The second bug
involves an incorrect MS code during Broadcast CSR Space primary address cycles. This bug has also been
corrected in the current version of the microcode. This version of the standard microcode can also be installed on
PC3 FSCC’s.

Appendix F - FSCC Version History

148 November 1, 1995

9.4 PC4a

9.4.1 Overview
The primary goals of the PC4a update, were to modify the FSCC to enable it to work more effectively in the
DART DAQ architecture, to add memory and other features to enhance programming ease, and to correct
hardware bugs which were discovered after the PC4 was produced.

9.4.2 Front Panel Trigger Port Enhancements
In order to take advantage of the ability of some front end modules to internally buffer events, the FSCC needed to
be able to buffer event triggers, and trigger ID’s. To this end, a 64 word deep Trigger FIFO was added to the Front
Panel Trigger Input Port. Trigger strobes received at the port now connect to the Trigger FIFO’s “Shift In” input.
Trigger ID values at the port are then clocked into the Trigger FIFO. The FPORT controller now monitors the
Trigger FIFO’s “Output Ready” output, instead of the Trigger Strobe input directly. The Trigger_Strobe_Hold
FPORT instruction tests the Output Ready line, and waits for it to go true. When this happens, it proceeds with its
readout instruction list. Presumably, this list would contain an End_Of_Event instruction which will cause the
OPORT controller to start outputting the event. The End_Of_Event instruction also clocks the next Trigger ID out
of the Trigger FIFO, so the proper Trigger ID will be attached to each event. The data outputs of the Trigger FIFO
containing the Trigger ID values, now connect directly to the Header & Counter logic, allowing the Trigger ID to
be automatically written directly into the Header field of the leading word count word. This feature of
automatically writing the Trigger ID values directly into the Header may be enabled by setting a bit in the H&C
Control register.

In order to prevent the Trigger FIFO from being overrun by triggers, a Trigger Hold Off output is provided. This
output is jumper configurable to go true on one of four possible conditions. Trigger FIFO Almost Full (56 or more
Triggers are queued), Trigger FIFO Half Full (32 or more Triggers are queued), Trigger FIFO Empty, and
End_Of_Event (signals that the event readout is complete).

9.4.3 Suppressing Zero Word Events (SZE)
In some systems, it is possible for the front end modules to not have data after some events. If the FSCC’s FPORT
controller is running in a loop where it reads out the crate and outputs the data after each trigger is received, the
OPORT controller would output a Word Count Word with a value of zero, and then no data. In order to reduce the
amount of meaningless data collected, it is sometimes desirable to suppress these “Word Count only” events. The
ability to suppress these events is provided for in PC4a FSCC’s. When enabled, if the OPORT controller pulls a
zero word event from the Data FIFO, it will simply pass the token without outputting the zero word event.
Enabling the SZE feature does not effect OPORT output rate or operating mode settings. The feature is enabled by
setting a control bit in the OPORT Control register. The Reset default state of the SZE bit is zero (disabled).

9.4.4 Write Protect Non-Volatile RAM
To protect the Non-Volatile RAM and the Real Time Clock (RTC) from inadvertently being overwritten, a write
protect/enable bit has been added. By default, the NVRAM/RTC is Read-Only. To write to the NVRAM/RTC,
the write enable bit must be set. The NVRAM and the Real Time Clock can then be accessed normally until the
write protect bit is set.

9.4.5 FPORT Microcode Enhancements
Six new microcode instructions have been added to PC4a modules. Five of these instructions are List Mode
instructions, and one is a Normal FPORT instruction. Three of the five List Mode instructions are delay
instructions. The FPORT can now be programmed to pause for a given amount of time before executing the next
instruction. This is done by inserting a delay instruction at the desired point, into the list like any other instruction.
A pause for two, ten, or one hundred microseconds is generated upon execution of one of the three instructions.
Delay instructions can also be chained in any order.

Appendix F - FSCC Version History

Novmber 1, 1995 149

A POLL_HALT_REQUEST (PHR) instruction has also been added. This List FPORT instruction is inserted into
the list at a convenient stopping point, to allow a graceful halting of FPORT List execution when the List is
repeating itself. Each time the FPORT executes the PHR instruction, it checks to see if an FPORT List Halt
Request instruction has been executed by the processor. If the processor hasn’t executed such an instruction, then
list execution continues. If the processor has requested a List Halt, then the FPORT halts list execution. The
processor FPORT List Halt Request instruction can only work if the PHR instruction is executed by the FPORT.
If the processor Halt Request instruction is executed, but the FPORT does not execute a PHR instruction within the
Long Time-out period, a 68020 bus error exception will occur. The FPORT must be reset to take it out of the
halted state.

The GENERATE_FPCREQ instruction generates an FPCREQ interrupt when executed. If it is desired to cause a
CPU interrupt at some point during list execution, this list instruction is inserted at the desired point in the list. The
FPCREQ interrupt is then enabled in the interrupt controller. Some care must be exercised in the use of this
instruction, since if the GENERATE_FPCREQ instruction is in a list which is repeating itself, it is possible to
overwhelm the operating system with interrupts, causing an apparent CPU hang. In general, use of this instruction
in a self repeating list should be avoided, unless it is known that the minimum time between interrupts will be long
enough for the CPU to service them.

In order to facilitate the use of FSCC’s in DAQ system diagnostics, it was desired to be able to transmit the same
data out of the FSCC’s Data FIFO many times without reading out any slaves. This is possible by first filling the
Data FIFO, and executing an End_Of_Event instruction to output the first data block. Then toggling the Data
FIFO Retransmit bit, and executing the End_Of_Event instruction, instead of filling the Data FIFO each
subsequent time the data is to be output. This bit sets the Data FIFO’s internal pointers to zero, so that the
previously outputted data can be output again. A problem arises when an End_Of_Event instruction is executed to
output the event. The End_Of_Event instruction tells the OPORT controller to start outputting data, but it also
writes the End_Of_Event flag into the back of the Data FIFO to delineate events in the FIFO. The OPORT
controller then pulls the data out of the FIFO and outputs it until it sees the End_Of_Event flag pop out. Under
normal use, when the Data FIFO is being filled by reading out front end boards over FASTBUS, this is no
problem, but if the Data FIFO is being Retransmitted, then there will already be an End_Of_Event flag in the FIFO
from the previous event. Now when the End_Of_Event instruction is executed to tell the OPORT to start
outputting the data, another End_Of_Event flag is inserted into the Data FIFO. If the test program is looping
where it Retransmits the Data FIFO and then executes an End_Of_Event instruction, the Data FIFO will eventually
fill up with End_Of_Event flags, causing an FPORT error. To prevent this from happening, a special version of
the End_Of_Event instruction was included on PC4a boards. This instruction functions identically to the normal
End_Of_Event instruction, except that it does not write an End_Of_Event flag into the Data FIFO. This Normal
(Non-List) FPORT instruction is called End_Of_Event_Rexmit.

9.4.6 Add Control FIFO Status Bit
To give the CPU, and the user more information about what the FSCC is doing at the current time, the Control
FIFO Empty flag has been mapped into an OPORT status register. When this bit reads as a zero, this means that
there are no Header/Word Count words in the Control FIFO. When an event is read into the FSCC’s Data FIFO,
and an End_Of_Event instruction is executed, the Header/Word Count word is inserted into the Control FIFO,
causing the Status bit to read high. As soon as the OPORT controller starts outputting the data, it pulls the word
out of the Control FIFO, and the Status bit will go low again. Effectively, the Status bit being true means that there
is at least one complete event in the Data FIFO which is not yet being output. If the Status bit reads low, this does
not mean that there is no Data in the Data FIFO, it may contain a part of an event which is currently either being
read out, or being output.

9.4.7 Modify OPORT Controller to Comply with DART Protocol
The DART data stream protocol requires that data blocks on the data stream cable be delineated by a control signal
pulse. This control signal is called End_Of_Record (EOR). The PC4a OPORT controller can drive EOR after it
outputs the last data word, and before it passes the token, if it is operating in Event_EOR mode.

Appendix F - FSCC Version History

150 November 1, 1995

The PC4a OPORT controller has also been enhanced by adding a variable data output rate feature. By default, the
OPORT outputs data at a 10 MHz rate (40 MBytes / Sec). If desired, this rate can be reduced through software.
The two other supported data rates are 6.67 MHz (26.68 MBytes / Sec), and 5.0 MHz (20 MBytes / Sec).

9.4.8 Expand CPU Memory Map
In order to allow the use of the second band of PROM, and to allow the installation of larger RAM chips to expand
available program RAM, the CPU memory map was changed to allow for larger RAM and ROM areas.

Appendix F - FSCC Version History

Novmber 1, 1995 151

9.5 PC4b
9.5.1 Overview

The primary goal of the PC4b modifications were to change the FSCC to allow it to meet the newly revised DART
(Data Acquisition Real Time) Interface Specification (Document Number: ESE-DART-950511-A). The DART
Interface Specification defines the physical medium, data format, and timing of the RS-485 data stream,
PERMIT_IN/PERMIT_OUT token passing links, and the Event Trigger Link.

Secondary goals of the PC4b changes were to enhance data flow control by routing the Data FIFO status flags into
the Trigger Hold-Off Output logic, and to fix two design flaws.

9.5.2 DART Interface Specification Changes
9.5.2.1 Data Link Changes (OPORT)

Most of the changes required to meet the DART Data Link Specification, actually involved changes to the
auxiliary card (FSCC-DARTAC). However, there were some changes to the FSCC itself. The timing of the
enable lines to the RS-485 drivers on the FSCC-DARTAC was changed to enable the driver for the Data Strobe
line 50ns before the drivers for the data lines. This was done to help prevent false Data Strobe transitions due to
crosstalk on the data cable. The OPORT controller was also changed to prevent data transitions for 100ns after the
data drivers are enabled.

Supported OPORT modes have been redefined to more realistically reflect the way the OPORT is actually used.
The designation Event_Mode has been renamed Token_Middle. Force_Event_Mode is now known as
Token_First, and Event_EOR is now Token_Last. The name changes are to more accurately reflect the function
of the modes, and hopefully, to make programming the FSCC somewhat more intuitive.

Token_Only mode has been added to allow the use of the PC4b as the only data source on a data link. With
previous versions of the FSCC, it was sufficient to set the OPORT into Event_Mode (now Token_Middle), and
use a LEMO type terminator installed in the PERMIT_IN input. This effectively forced the PERMIT_IN input
true. With the conversion of the PERMIT_IN input to NIM level, putting a terminator into the PERMIT_IN input
does not force the input true, therefore, the new mode was needed.

CPU mode (Control mode) operation of the OPORT is no longer supported. CPU mode allowed data to be written
directly into the Control FIFO, and output as data through the OPORT. This mode was originally thought to be
useful for testing the personality cards, and the data links connected to them. However, it has become obvious that
writing data directly into the Data FIFO is much more useful for testing purposes. To make space in the OPORT
controller for Token_Only mode, the seldom used CPU mode was deleted.

Event_With_Manual_Permit_Out and Permit_Out modes are also no longer supported. These modes were
originally designed to allow the readout program to drive End_Of_Record and other control lines manually from
the processor. The PC4b OPORT has been enhanced so that End_Of_Record is now driven with the appropriate
timing when the OPORT is set into Token_Last mode. Once configured, the readout code no longer needs to be
concerned about the communication protocol on the data link.

The RS-485 driver for the End_Of_Record signal is now enabled whenever the OPORT is set into Token_Last or
Token_Only modes. The driver is disabled in all other modes.

The FSCC-DARTAC was changed to allow the Data Strobe pulse to be inverted and lengthened to match the
DART Data Link Specification. The active edge is now the low going edge of the Data Strobe. All termination
SIP resistor packs were removed from the FSCC-DARTAC to allow the use of DART Upstream and Downstream
termination modules, and unused control lines 16/32*, SSTROBE, FEVEN, SPARE0, SPARE1, and SPARE2
were either cut or permanently disabled.

The function of the four DIP switches on the FSCC-DARTAC have been redefined. Switch 1, 3, and 4, now have
no function, and can be left in either the open or closed position. Switch 2 now controls the RS-485 WAIT enable.

Appendix F - FSCC Version History

152 November 1, 1995

When the switch is open, RS-485 WAIT is disabled. WAIT received from the data buffer is ignored. When the
switch is closed, WAIT is enabled. WAIT received from the data buffer is passed to the FSCC and the data
transmission is paused. This switch setting was added to allow the RS-485 cables to be disconnected and still
allow data to be clocked out of the OPORT for testing purposes.

9.5.2.2 PERMIT Link Changes (PERMIN/PERMOUT)
The most significant change to the front panel PERMIT connectors is that they were changed to NIM level signals
from TTL level signals. The active level for both PERMIT_IN, and PERMIT_OUT, is a NIM “1”, which
approximately -0.8 Volts when the line is terminated in 50 ohms. The inactive level is NIM “0” which is
approximately ground level. The FSCC’s PERMIT_IN connector supplies the necessary 50 ohm NIM termination.
PERMIT_IN and PERMIT_OUT were also redefined to be edge triggered signals rather than level triggered.

In order to use the FSCC as the only data source a data cable, the module must think that it is both “first” and
“last” on the PERMIT token passing chain. It must be first so that it starts outputting data without waiting for a
PERMIT_IN on the first event, and it must be last so that it drives the EOR signal on the data cable. With previous
versions of the FSCC, “first and last” mode was done by setting the FSCC into Token_Last (formerly Event_EOR)
mode, then putting a 50 ohm terminator into the PERMIT_IN input on the front panel. The terminator forced the
PERMIT_IN input to its active state, so the module always had the token. Since the PERMIT connections were
changed to NIM levels on the PC4b FSCC’s, inserting a 50 ohm terminator into the PERMIT_IN input no longer
forces the input to its active state. To allow the PC4b modules to be both “first and last” in the PERMIT chain, a
new mode was added to the Output Port Controller. When using the PC4b FSCC as the only data source on the
data cable, Token_Only mode should be used.

9.5.2.3 Trigger Link Changes (Trigger Strobe, and Trigger ID bits)
The RS-485 Trigger Strobe input on the PC4b FSCC has been changed slightly. The active edge of the RS-485
Trigger Strobe has been changed to the low-going edge. The termination resistors have been removed from both
the RS-485 Trigger Strobe and the Trigger ID inputs. An external termination module must now be used. A NIM
level version of the Trigger Strobe input was also added to the PC4b FSCC which is logically ORed with the RS-
485 Trigger Strobe input. This input is also on the front panel.

The Trigger Hold Off (THO) front panel output has been changed from a TTL level signal to a NIM level signal.
The active level for all front panel NIM level signals is a NIM “1” (approximately -0.8 Volts when terminated by a
50 ohm resistor).

9.5.3 Data Flow Control Enhancements
Originally, the FSCC was not designed with multi-event buffering front end modules in mind, for the simple
reason that they did not exist at that time. Since it was desired to use the FSCC with these newer front-end
modules, the Trigger FIFO and the Trigger Hold Off (THO) output was added to the FSCC during the PC4a
upgrade. In an effort to prevent data buffer overflow when the FSCC is used with these modules, two of the
FSCC’s Data FIFO status flags have been added to the THO logic. Data FIFO Half Full, and a latched version of
Data FIFO Full have been logically ORed with the jumper selectable THO condition available on the Trigger FIFO
child board. If the Data FIFO becomes half full during a readout, the THO output is driven true until the Data
FIFO becomes less than half full. If the Data FIFO becomes full during a readout, this error condition is latched
by the THO logic and the THO output is driven true until the Output Port Controller is reset.

9.5.4 Bug Fixes
Two bugs have been corrected in the PC4b modifications. The first involved skewing of the FASTBUS Data
Acknowledge (DK) signal. The FASTBUS specification dictates that the Master must delay the incoming DK
signal from the Slave by a small amount, to allow some setup time for the Slave Status (SS) lines. Previous
versions of FSCC’s did not have this delay, and it was noticed that there were rare but persistent problems with the
FSCC when used with certain slaves. The DK input of PC4b FSCC’s now provide this delay.

Appendix F - FSCC Version History

Novmber 1, 1995 153

The second bug is related to the FASTBUS Short Timer time-out value. The Short Timer is the device which
times the response of the Slave or Ancillary Logic to the Master’s assertion of certain control lines. Previous
version of the FSCC had a Short Timer time-out value of approximately 1.6 micro-seconds which is the minimum
allowed by the FASTBUS specification. It seems that some Ancillary Logic had Broadcast timers of
approximately the same value. This caused occasional time-out errors during Broadcast addressing cycles. The
time-out value of the Short Timer on the FSCC was increased to prevent this error.

During testing of certain front-end modules which featured Mega-Block mode readout, it was noticed that the
readout worked without errors until a certain number of modules were added to the Mega-Block chain. This
caused a Short Time-out error on the FSCC. This problem was traced to the way the Slaves released the AS-AK
lock after the Mega-Block readout was completed. The release of AK had to ripple back through all of the Slaves
before the AK line on the bus was lowered. Each of the Slaves added some delay, until the total AS(down) to
AK(down) time was greater than the newly lengthened Short Timer value on the FSCC. Since the current
FASTBUS specification is somewhat vague with regard to this condition, it was decided that lengthening the
FSCC’s Short Timer value even more was the most cost effective solution. The PC4b Short Timer value is
approximately 3 micro-seconds.

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

154 November 1, 1995

10. Appendix G - FSCC Auxiliary Output Port
Interface Cards

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

Novmber 1, 1995 155

Fermi National Accelerator Laboratory

10.1 FSCC- DARTAC INTERFACE

AUXILIARY BOARD

Version 3.1

Oscar Trevizo, Mark Bowden, Jeff Constable,
Geoff Cottrell, Rick Kwarciany, Dan Moline

October 4, 1995

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

156 November 1, 1995

10.1.1 GENERAL INFORMATION

The FSCC-DARTAC Auxiliary Board is a custom version of the original FSCC-VDAS Auxiliary Board . It will
interface the FASTBUS Smart Crate Controller (FSCC) with the FIFO system of DART Data Acquisition System
compliant buffers, to allow data flow from the FSCC to the attached DAQ system. Connector requirements for the
DART system are provided for in this version.

Figure 19 shows how data flows from the FSCC to a DAQ buffer through the auxiliary board:

Ctrl

FSCC

FSCC
RS-485

DAQ DATA
BUFFER

Ctrl

DATA
TTL

Level

DATA
RS485
Level

Aux.
Board

Figure 19 DART DAQ System Block Diagram (Partial)

10.1.1.1 Board Purpose

The FSCC-DARTAC Auxiliary Board converts TTL level signals coming from the FSCC output port (FASTBUS
Auxiliary connector) to RS485 level signals. The FSCC output port is a 195 pin FASTBUS standard 3 row
connector containing 32 bits of data, and 6 control signals. Pin definitions of the connector are shown in this
document.

Two twisted pair ribbon cables connect data and control signals on the auxiliary board to the DAQ system. A 50
pin ribbon cable for the lower 16 bits of differential data, control signals, and a 34 pin cable for the upper 16 bits of
differential data.

10.1.1.2 Packaging

This is a standard FASTBUS auxiliary board. FASTBUS auxiliary boards are located in the auxiliary backplane
port of the crate. See IEEE STD 960-1986 section 14.

10.1.1.2.1 Physical Size

Physical dimensions of the board comply with FASTBUS auxiliary boards. See section 14 of IEEE STD 960-1986.

10.1.1.3 Power Requirements

Power is supplied by connection to the FSCC through the FSCC’s FASTBUS Auxiliary connector. The board
requires +5 Volts @ 1.3 Amp.

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

Novmber 1, 1995 157

10.1.1.4 Cooling Requirements

Cooling requirements comply with FASTBUS standards (see FASTBUS Std section 13.3).

10.1.1.5 ICs Used

1. National Semiconductor chips DS96174 and DS96175, 16 pin Quad Differential Line Drivers, make the level
conversions between TTL and RS485. They meet a transmission rate of 10 Mbs. The following is a list of specs:

•Meets EIA Standard for RS485 and RS422A
•Monotonic Differential Output Switching
•Three-State Outputs
•Designed For Multiple Bus Transmission
•Common Mode Output Voltage Range: -7V to +12V
•Operates From Single +5V Supply
•Thermal Shutdown Protection

For more information see National Semiconductor Linear Data Book.

2. TTL 74F00 converts proper polarity for strobe signal. This gate also allows the delay path of the Strobe line to
be similar to the delay path for the data.

3. Lattice GAL22V10-15 PAL currently used for miscellaneous combinatorial logic.

10.1.1.6 Pin Configurations

The three connectors used are: a 195 pin 3 row connector from the FASTBUS auxiliary backplane, a 50 pin 3M
connector and a 34 pin 3M connector for DART buffers.

10.1.1.6.1 FASTBUS 195 Pin 3 row Backplane Connector

For standard auxiliary backplane connector see FSCC documentation.

Pins B16 through B47 hold data(0) through data(31) with B59 for DATA_OUTPUT_ENABLE.

Control pins are B14 for STROBE, B58 for WAIT, and B15 for End_Of_Record.

Driver enables are as follows: B59 for Data_Output_Enable, B60 for Strobe_Output_Enable, and B8 for
End_Of_Record_Enable.

Power pins are: A12, A32, and C63 for -5.2V; A43, C12, and C53 for +5V; B65 for -2V; and A22, A53, A63, B64,
C22, C32, and C43 for GROUND.

10.1.1.6.2 50 Pin Connector

This connector contains data as follows:

Pin1 has data(0), Pin2 has -data(0)
Pin3 has data(1), Pin4 has -data(1)
Pin5 has data(2), Pin6 has -data(2)
Pin7 has data(3), Pin8 has -data(3)

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

158 November 1, 1995

Pin9 has data(4), Pin10 has -data(4)
Pin11 has data(5), Pin12 has -data(5)
Pin13 has data(6), Pin14 has -data(6)
Pin15 has data(7), Pin16 has -data(7)
Pin17 has data(8), Pin18 has -data(8)
Pin19 has data(9), Pin20 has -data(9)
Pin21 has data(10), Pin22 has -data(10)
Pin23 has data(11), Pin24 has -data(11)
Pin25 has data(12), Pin26 has -data(12)
Pin27 has data(13), Pin28 has -data(13)
Pin29 has data(14), Pin30 has -data(14)
Pin31 has data(15), Pin32 has -data(15)
Pin33 has strobe, Pin34 has -strobe
Pin35 is not used, Pin36 is not used
Pin37 has WAIT, Pin38 has -WAIT
Pin39 is not used, Pin40 is not used
Pin41 has EOR, Pin42 has -EOR
Pin43 is not used, Pin44 is not used
Pin45 is not used, Pin46 is not used
Pin47 is not used, Pin48 is not used
Pin49 is not used, Pin50 is not used

10.1.1.6.3 VDAS 34 Pin Connector

Pin1 has data(16), Pin2 has -data(16)
Pin3 has data(17), Pin4 has -data(17)
Pin5 has data(18), Pin6 has -data(18)
....
....
Pin31 has data(31), Pin32 has -data(31)

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

Novmber 1, 1995 159

10.1.2 THEORY OF OPERATION AND OPERATING MODES

Each of eight DS96174 converts four bits of TTL level data to differential RS485 level data. One DS96174
converts the STROBE signal, to RS485 level. The DS96175 converts the WAIT RS485 level signal from the
DART buffer module to the TTL WAIT signal on the FSCC. The Strobe output of the FSCC is run through a gate
to allow its delay path to more closely match the delay path of the Data. Data is valid on the leading (falling) edge
of the RS-485 Strobe signal The 22V10 PAL on the board was added to version 3.0 to allow more implementation
flexibility concerning the WAIT input, and also the EOR (a.k.a.’s: EOE or EOB) output. The pal also has a four
switch DIP switch connected to it to allow quick configuration changes in the field. For detailed operation of the
WAIT input logic, and of the EOR output logic see PAL equation listing at end of this document. Current DIP
switch definitions are listed in their own section of this document.

10.1.2.1 Basic Operation

The basic operation is better described by the timing diagram in section 2.11, however, a summary is provided:

• A 100ns clock drives a the 32-bit data register on the FSCC.
• STROBE from the FSCC rises ~40 nsecs. after data becomes valid.
• STROBE is inverted and delayed slightly. Data is valid on the falling edge.
•New data is presented on 100 nsecs cycles.

This process continues until the DAQ buffer asserts WAIT, or the entire event is output. During WAIT:

•The data register clock to stays LOW.
•STROBE to stay LOW (RS-485 data strobe remains high).
•Data does not change.

10.1.2.1.1 DIP Switch Settings
Function Switch 1

No Function X

Function Switch 2

FSCC WAIT Always False open
FSCC WAIT = RS-485 WAIT closed *

Function Switch 4 Switch 3
No Function X X

* = Default setting for DART System.

DIP Switch 1 has no function, and may be left in either position.

DIP Switch 2 allows the RS-485 WAIT control line to be either received or ignored by the FSCC.

DIP Switches 3 and 4 have no function and may be left in either position.

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

160 November 1, 1995

10.1.2.1.2 Jumper Settings
The jumper block on the FSCC-DARTAC Aux. card has no function. The jumper may be in any position or
removed.

Table 21 FSCC-DARTAC Parts List
Description Quan Stock # Manufact

urer
Man. # Price

each
Cost/board

.1uF Ceramic, Dip Cap 14 1415-
3140

Sprague 923C25U104M05
0B

$0.20 $2.80

100 Ohm, 8-pin, 4-resistor SIP 11 Bourns 4308-102-101 $0.20 $2.20

47uF 25V Polarized Capacitor 1 1425-
1200

$0.98 $0.98

50ns Delay 1 Dallas DS1000-50 $3.98 $3.98

8-Pin SIP Socket 11 Samtec SS-108-G2 $0.85 $9.35

Circuit Board 1 (by
contract)

$45.00 $45.00

FASTBUS AUX connector 1 AMP 534974-9 $27.00 $27.00

Miniature fuse 2 A 1 PICO 251.002 $0.75 $0.75

Right angle header, 34-pin 1 1435-
7105

3M 3431-5302 $1.60 $1.60

Right angle header, 50-pin 1 1435-
7115

3M 3433-5302 $2.25 $2.25

Quad 2-input Positive Nand 1 TI N74F00N $0.40 $0.40

Quad Differential Line Driver 10 National DS96174 $1.75 $17.50

Quad Differential Line Receiver 1 National DS96175 $1.60 $1.60

Transorb 1 ICTE-5 $1.24 $1.24

22 input, 10 output PAL 1 Lattice GAL22V10-15 $14.00 $14.00

4 switch DIP switch 1 $0.00

1K Ohm 1/8 Watt Resistor 4 $0.00

2x3 pin jumper block 1 $0.00

Miniature Spring Socket 2 AMP 2-331272-2 $0.23 $0.46

24-pin x 300Mil DIP socket 1 Samtec ICO-324-SGG $1.87 $1.87

Total $132.98

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

Novmber 1, 1995 161

10.1.2.1.3 PAL Source Listing
module auxcard
title ’DART auxcard WAIT, and EOR logic

Richard Kwarciany Fermilab 4/28/93’

" Made changes to meet DART Interface 3.11 spec.
" Add EOR_OE equation
" Eliminate DIP switch setting for EOR source
" RK 6-14-95

auxcard device ’p22v10’;

CLK PIN 1; "AC07
!SWAIT PIN 2; "wait input from RS-485
!OPOEOR PIN 3; "EOR from FSCC OPORT controller (AC09)
OUTEN PIN 4; "RS-485_Output Enable
STROBE PIN 5; "strobe from FSCC
SPARE0 PIN 6; "Spare input from RS-485 (Formerly Sequencer Busy)
SPARE1 PIN 7; "Spare input from RS-485
AC12 PIN 8; "spare input from FSCC OPORT sequencer
DIP1 PIN 9; "DIP switch EOR source sel
DIP2 PIN 10;"DIP switch WAIT sel
DIP3 PIN 11;"DIP switch EOR enable sel 0
DIP4 PIN 13;"DIP switch EOR enable sel 1
AC02 PIN 14;"spare I/O from FSCC processor
AC06 PIN 15;"spare I/O from FSCC processor
AC05 PIN 16;"spare I/O from FSCC processor
EOR_OE PIN 17;"EOR output enable
!PROEOR PIN 18;"EOR from FSCC processor
!DEOR PIN 19;"EOR output to RS-485
SPARE2_OE PIN 20;"output enable for SPARE2 RS-485 output
DEOR_OE PIN 21;"output enable for EOR output to RS-485
SPARE2 PIN 22;"spare RS-485 output
!FWAIT PIN 23;"wait output to FSCC OPORT controller

equations

" Drive the EOR output using the input from the FSCC’s OPORT controller.
DEOR = OPOEOR;

" Drive FSCC WAIT if BUFFER_BUSY is recieved
" or tie wait perminantly false by setting DIP2 to a one (switch open).
FWAIT = !DIP2 & SWAIT;

" EOR output is enabled by the FSCC’s output port controller.
DEOR_OE = EOR_OE;

" SPARE2 output is perminantly disabled.
SPARE2_OE = 0;

" SPARE2 is unused.
SPARE2 = 0;

END

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

162 November 1, 1995

Fermi National Accelerator Laboratory

10.2 FSCC-VDASAC INTERFACE (E791)

AUXILIARY BOARD

Version 3.0

Oscar A. Trevizo, Mark Bowden
Jeff Constable, Richard Kwarciany, Dan Moline, Geoff Cottrell

October 31, 1992

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

Novmber 1, 1995 163

10.2.1 1.GENERAL INFORMATION

The FSCC-VDAS Auxiliary Board will interface the FASTBUS Smart Crate Controller (FSCC) with the
FIFO system of the Video Data Acquisition System (VDAS) to allow data flow from the FSCC to the
VDAS-FIFO .

FSCC is a simple readout controller for low occupancy front-end modules that performs most basic
FASTBUS operations. VDAS, is a memory handling FIFO system with a 32-bit input port based on the
RS485 bus standard. It provides the mechanisms to store amounts of data as large as 176 MBytes at
speeds of 40 MBytes/sec in and 40 MBytes/sec out, simultaneously.

Figure 20 shows how data flows from the FSCC to the VDAS-FIFO through the auxiliary board:

Ctrl

FSCC

FSCC
VDAS

VDAS
FIFO

Ctrl

DATA
TTL

Level

DATA
RS485
Level

Aux.
Board

Figure 20 VDAS DAQ System Block Diagram (Partial)

Fermilab experiment E-791 is scheduled to use the FSCC-VDAS combination to collect data from fixed-
target experiments.

10.2.1.1 Board Purpose

The FSCC-VDAS Auxiliary Board converts TTL level signals coming from the FSCC output port to
RS485 level signals going into the VDAS input port. The FSCC output port is a 195 pin FASTBUS
standard 3 row connector containing 32 bits of data, STROBE, and WAIT control signals. The pin
definitions of the connector are shown in this document.

VDAS input port contains two connectors; a 64 pin ribbon connector for 32 bits of true and inverse data,
and a 10 pin connector for STROBE and WAIT control signals.

The auxiliary board will pass data to the VDAS system as long as no WAIT signal is generated by the
VDAS system. The VDAS system will send a WAIT signal to the auxiliary board in the event that a
FIFO "near full" condition occurs.

10.2.1.2 Application

The first application for this board is for Fermilab experiment E-791, Hadroproduction of Charm and
Beauty in the Tagged Photon Laboratory. The main objective of E-791 is to explore new ground in charm
and beauty physics. Fast front-end electronics (<20 µs readout times) and fast data acquisition is required

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

164 November 1, 1995

as part of the overall system for reconstructing a large number of events in E-791. For more information
about E-791 see the 1989 Fermilab Research Program Workbook page 95.

10.2.1.3 Packaging

This is a standard FASTBUS auxiliary board. FASTBUS auxiliary boards are located in the auxiliary
backplane port of the crate. See IEEE STD 960-1986 section 14.

10.2.1.3.1 Physical Size

Physical dimensions of the board comply with FASTBUS auxiliary boards. See section 14 of IEEE STD
960-1986. (Roughly 5" wide by 7" tall, and .093" thick)

10.2.1.4 Power Requirements

The card is powered by a connection to the FSCC through the FSCC’s Auxiliary connector. Total power
consumption is approximately 2.5 Watts on the +5Volt supply.

10.2.1.5 Cooling Requirements

Cooling requirements comply with FASTBUS standards (see FASTBUS Std section 13.3).

10.2.1.6 Integrated Circuits Used

Fairchild chips µA96174 and µA96175, 16 pin Quad Differential Line Drivers, make the level
conversions between TTL and RS485. They meet a transmission rate of 10 Mbs. The following is a list
of specs:

•Meets EIA Standard for RS485 and RS422A
•Monotonic Differential Output Switching
•Three-State Outputs
•Designed For Multiple Bus Transmission
•Common Mode Output Voltage Range: -7V to +12V
•Operates From Single +5V Supply
•Thermal Shutdown Protection

For more information see Fairchild Linear Data Book 1987 page 9-87.

2. Delay IC from Dallas Semiconductor DS 1000-50 used to make a "one-shot" for the strobe signal.

3: TTL 74F00 converts proper polarity for strobe signal.

10.2.1.7 Pin Configurations

The three connectors used are: a 195 pin 3 row connector from the FASTBUS auxiliary backplane, a 64
pin connector and a 10 pin connector for VDAS.

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

Novmber 1, 1995 165

10.2.1.7.1 FASTBUS 195 Pin 3 row Backplane Connector

For standard auxiliary backplane connector see FSCC documentation section 1.32.

Pins B16 through B42 hold data(0) through data(31) with B59 for OUTPUT-ENABLE.

Control pins are B14 for STROBE*, and B56 for WAIT.

Power pins are: A12, A32, and C63 for -5.2V; A43, C12, and C53 for +5V; B65 for -2V; and A20, A53,
A63, B64, C22, C32, and C44 for GROUND.

10.2.1.7.2 VDAS 64 Pin Connector

This connector contains data as follows:

Pin1 has -data(31), Pin2 has +data(31)
Pin3 has -data(30), Pin4 has +data(30)
Pin5 has -data(29), Pin6 has +data(29)
....
....
Pin61 has -data(1), Pin62 has +data(1)
Pin63 has -data(0), Pin64 has +data(0)

10.2.1.7.3 VDAS 10 Pin Connector

Pin10 has +STROBE
Pin9 has -STROBE

Pin6 has WAIT ("near full")
Pin5 has -WAIT.

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

166 November 1, 1995

10.2.2 THEORY OF OPERATION AND OPERATING MODES

The board contains nine µA96174, one µ96175, one 195 FASTBUS backplane connector, one 64 pin
ribbon connector, and one 10 pin connector. Each of eight µA96174 convert four bits of TTL level data
to differential RS485 level data. One µA96174 converts the STROBE signal to RS485 levels. The
µA96175 converts the "near full" RS485 level signal from VDAS to the WAIT TTL signal in FSCC. The
delay line, and 74F00 is used to generate a 20 ns low going pulse on the VDAS Strobe line when a rising
edge is received on the Strobe line from the FSCC.

DATA BUS

CONTROL BUS

µA96174

µA96174

µA96174

µA96174

µA96174

µA96174

µA96174

µA96174

µA96174

µA96175

195 Pin
3 Row Module

Auxiliary
Connector

from FSCC

64 Pin
Ribbon

Connector

to VDAS

10 Pin SF

to VDAS

for STROBE and
WAIT (near full)

Figure 21 FSCC-VDASAC Block Diagram

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

Novmber 1, 1995 167

10.2.2.1 Basic Operation

The basic operation is better described by the timing diagram in section 2.11. The basic operation is:

• A 100ns clock drives a the 32-bit data register on the FSCC.
• STROBE from the FSCC rises 40 nsecs. after data becomes valid.
•The one-shot circuit causes the RS-485 data strobe to go low 6 ns after STROBE rising edge.
•The one-shot circuit times out after 20, 30, or 40 ns, (jumper selectable) and the RS-485 data

strobe goes high. Data is valid on this edge.
•new data is presented on 100 nsecs cycles.

This process continues until VDAS-FIFO is "near full." At "near full" (with memory storage space left
for about eight more words) WAIT goes HIGH, causing:

• The data register clock to stay LOW.
• STROBE to stay LOW (RS-485 data strobe remains high).
• Data does not change.

10.2.2.2 Timing Diagram

In the following timing diagram the FSCC's 50 ns internal clock drives a sequencer which drives the data
register clock, and the STROBE line. The time delay between this internal clock and its outputs
(STROBE and data register clock) is about 20 nsecs. The time delay between the data register clock and
data valid is about 9 nsecs.

clk

50ns

STROBE

DATA

WAIT

RS-485
Strobe

data
register
clock

Figure 22 FSCC-VDASAC Timing Diagram

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

168 November 1, 1995

10.2.3 PARTS LIST

Table 22 FSCC-VDASAC Output Port Auxiliary Board Parts List
Description Quan Stock # Manufact

urer
Man. # Price

each
Cost/board

.1uF Ceramic, Dip Cap 12 1415-
3140

Sprague 923C25U104M05
0B

$0.20 $2.40

100 Ohm, 8-pin, 4-resistor SIP 10 Bourns 4308-102-101 $0.20 $2.00

47uF 25V Polarized Capacitor 1 1425-
1200

$0.98 $0.98

50ns Delay 1 Dallas DS1000-50 $3.98 $3.98

8-Pin SIP Socket 10 Samtec SS-108-G2 $0.85 $8.50

Circuit Board 1 (by
contract)

$45.00 $45.00

FASTBUS AUX connector 1 AMP 534974-9 $27.00 $27.00

Miniature fuse 2 A 1 PICO 251.002 $0.75 $0.75

Right angle header, 64-pin 1 3M 1435-7120 $3.00 $3.00

Right angle header, 10-pin 1 3M 1435-7090 $1.25 $1.25

Quad 2-input Positive Nand 1 TI N74F00N $0.40 $0.40

Quad Differential Line Driver 9 Fairchild uA96174 $1.75 $15.75

Quad Differential Line Receiver 1 Fairchild uA96175 $1.60 $1.60

Transorb 1 ICTE-5 $1.24 $1.24

2x3 pin jumper block 1 $0.00

Miniature Spring Socket 2 AMP 2-331272-2 $0.23 $0.46

Total $114.31

